摘要:为了轻量化模型, 便于移动端设备的嵌入, 对YOLOv4网络进行了改进. 首先, 用MobileNetV3作为主干网络, 并使用深度可分离卷积替换加强特征提取网络的普通卷积, 降低模型参数量; 其次, 在104×104特征图输出时融合空洞率为2的空洞卷积, 与52×52的特征层进行特征融合, 获取更多的语义信息和位置信息, 细化特征提取能力, 提升模型对极小目标的检测性能; 最后, 将原来的池化层使用3个5×5的Maxpool进行串联, 减少计算量, 提升检测速度. 实验结果表明, 在华为云2020数据集上, 改进算法的mAP比YM算法提高了2.33%, 在公共数据集VOC07+12上, mAP提高了3.12%, FPS比原来的YOLOv4算法提高了一倍多, 参数量降低至原来的18%, 证明了改进算法的有效性.