摘要:针对虹膜图像中存在眼镜遮挡、模糊、角度偏差等不同噪声因素, 我们设计了一种基于Mask R-CNN的卷积神经网络(convolutional neural network, CNN), 命名为Mask-INet, 用于虹膜分割. 该网络在特征提取阶段为特征金字塔添加了一条自底向上的路径, 既提高了底层到顶层特征的定位信息, 增强语义信息融合, 又进一步加快了底层到顶层的传播效率, 有效提升对虹膜特征提取的准确性. 为了进一步挖掘特征图中的特征信息, 在掩模预测分支阶段, 我们引入上采样和CBAM网络(convolutional block attention module), 利用上采样提高特征图的空间分辨率, 利用CBAM网络让特征图中的显著信息更加显著, 增强对特征的判别性. 该方法在NIR-ISL 2021比赛提供的虹膜数据集进行了验证. 在相同实验条件下与该赛事的冠军相比, 该方法的各项指标均优于其网络. 与基线Mask R-CNN相比, 该方法的Dice相似系数、平均交并比、召回率分别提升了8.53%、11.97%、8.88%, 提升了虹膜分割效果.