基于人脸表情识别的在线课堂学生专注度分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省科技计划重点项目(2017ZDCXL-GY-05-03)


Analysis of Students’ Concentration in Online Classroom Based on Facial Expression Recognition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对人脸表情识别在特征提取时容易丢失大量有用的特征信息, 无法提取更加全面的人脸表情特征的问题, 提出了一种多尺度特征融合网络模型(DS-EfficientNet). 该模型包括深层网络和浅层网络两部分, 浅层网络用来提取面部表情的细节纹理信息, 深层网络提取表情的全局信息. 并在浅层网络中加入注意力机制, 增强对浅层细节信息的提取能力. 最终在通道上进行特征融合, 融合之后网络可以提取更加丰富的人脸表情信息. 为了减少模型参数, 提高模型的泛化性能, 将全连接层替换为全局平均池化层, 加入批归一化. 本文提出的方法在Fer2013和CK+上进行实验, 识别准确率达到了73.47%和98.84%. 实验证明该方法可以提取人脸更加丰富的表情信息, 模型具有更强的泛化能力.

    Abstract:

    Facial expression recognition is easy to lose a lot of useful feature information during feature extraction and cannot extract more comprehensive facial expression features. In view of these problems, a multi-scale feature fusion network model (DS-EfficientNet) is proposed. The model includes a deep network and a shallow network. The shallow network is used to extract the detailed texture information of facial expressions, and the deep network is used to extract the global information of expressions. An attention mechanism is added to the shallow network to enhance the ability to extract shallow detail information. Finally, feature fusion is performed on channels, and the network can extract more abundant facial expression information after the fusion. In order to reduce the model parameters and improve the generalization performance of the model, the fully connected layer is replaced by a global average pooling layer, and batch normalization is added. The method proposed in this study is tested on Fer2013 and CK+, and the recognition accuracy reaches 73.47% and 98.84%. Experiments show that this method can extract more abundant facial expression information, and the model has a strong generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

王林,赖梦林.基于人脸表情识别的在线课堂学生专注度分析.计算机系统应用,2023,32(2):55-62

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-24
  • 最后修改日期:2022-07-25
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号