摘要:针对人工识别探地雷达管线图像时效率低、误差大和成本高昂等问题, 本文提出了一种基于改进Cascade R-CNN的管线目标智能化检测方法. 首先对探地雷达管线图像数据集进行预处理, 提升数据质量. 然后采用ResNeXt代替ResNet作为主干网络提取目标特征信息, 并添加多尺度特征融合模块FPN使高层特征向低层特征融合, 增强低层特征表达能力. 其次, 使用高斯形式的非极大值抑制方法Soft-NMS得到更加精准的候选框, 使用Smooth_L1作为损失函数, 加速了模型收敛并且降低了训练中发生梯度爆炸的概率. 最后, 对于管线目标特殊的形状特征, 设置合适的锚框长宽比和大小, 提高锚框的生成质量. 实验结果表明, 本文方法解决了复杂特征的地下管线目标智能化检测, 对地下管线目标检测的平均精度达到94.7%, 比Cascade R-CNN方法提高了10.1%.