基于LightGBM的EAST杂质破裂预警
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家磁约束核聚变能发展研究专项(2018YFE0302100); 国家自然科学基金(12005264, 12075285, U1867222, 12022511)


Prediction of EAST Impurity Disruption Using LightGBM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对全超导托卡马克核聚变实验装置东方超环(EAST)运行放电期间发生的杂质破裂进行预测对未来的聚变装置的长脉冲稳态放电有重要意义. 根据杂质破裂的物理特性筛选出的2018年的334炮杂质破裂炮数据以及2021年的1628炮非破裂炮作为训练炮, 再由等离子体平衡、密度、电流以及辐射等8种诊断信号组成的训练样本以LightGBM算法训练出杂质破裂预测模型. 实验结果表明LightGBM算法模型可以对杂质破裂进行准确预测(成功预测率96.29%), 非破裂炮的误判率6.87%. 研究结果证明利用LightGBM进行EAST等离子体杂质破裂预警是可行的方案.

    Abstract:

    The prediction of impurity disruption during the discharge period of experimental advanced superconducting tokamak (EAST) is of great significance for the long-pulse steady-state discharge of future EAST. According to the physical characteristics of impurity disruption, the data of 334 impurity disruptive discharges in 2018 and 1 628 non-disruptive discharges in 2021 are selected as training discharges. Then, the training samples composed of eight diagnostic signals, including plasma equilibrium, density, current, and radiation signals, are used to train the impurity disruption prediction model by LightGBM. The test results reveal that the LightGBM model can accurately predict the impurity disruption, with a success rate of 96.29%, while for non-disruptive discharges, the false positive rate is 6.87%. The research results indicate that it is feasible to use LightGBM to predict plasma impurity disruption of EAST.

    参考文献
    相似文献
    引证文献
引用本文

孙召宏,胡文慧,袁旗平,高彬富,丁锐,曾龙,肖炳甲.基于LightGBM的EAST杂质破裂预警.计算机系统应用,2023,32(1):50-60

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-02
  • 最后修改日期:2022-07-01
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号