基于社区与结构熵的异质网络影响力最大化
作者:
基金项目:

国家自然科学基金(62062066, 61762090, 61966036); 云南省基础研究计划重点项目(202201AS070015); 云南省高校物联网技术及应用重点实验室项目; 国家社会科学基金 (18XZZ005); 云南省教育厅科学研究基金(2021Y026); 云南大学研究生科研创新项目(2021Y024)


Influence Maximization of Heterogeneous Networks Based on Community and Structure Entropy
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    影响力最大化的目的是在网络中发现能够触发最大数量的剩余节点参与到信息传播过程的一小群节点. 目前异质信息网络中影响力最大化的研究通常从网络中抽取同质子图、或基于节点局部结构的元路径进行节点影响力的评估, 没有考虑节点的全局特征和网络中高影响力节点间的集群现象给种子集合最终扩散范围造成的影响损失. 文中提出了一种基于社区与结构熵的异质信息网络影响力最大化算法, 该算法能够有效地从局部和全局两个方面度量节点的影响. 首先, 通过构建元结构保留节点在网络中的局部结构信息和异质信息度量节点的局部影响; 其次, 利用节点所属社区在整个网络中的权重占比对节点的全局影响进行度量; 最后, 综合求出节点的最终影响并选出种子集合. 在真实数据集上进行的大量实验结果表明所提算法有较好的有效性和效率.

    Abstract:

    The purpose of influence maximization is to find a small group of nodes in a network that can trigger the maximum number of remaining nodes to participate in the process of information transmission. At present, the research on the influence maximization of heterogeneous information networks usually extracts homogeneous subgraphs from the network or evaluates the influence of nodes according to the meta-path of local node structure. However, it does not consider the global features of nodes and the influence loss of the final spread range of the seed set caused by the clustering phenomenon among highly influential nodes. This study proposes an influence maximization algorithm for heterogeneous information networks based on community and structure entropy, which can effectively measure the influence of nodes locally and globally. Firstly, the local structure information and heterogeneous information of nodes in the network are retained by the construction of meta-structure to measure the local influence of nodes. Secondly, the global influence of nodes is measured by the weight ratio of the community to which the nodes belong to the whole network. Finally, the final influence of nodes is calculated, and the seed set is selected. Many experiments on real data sets indicate that the proposed algorithm is effective and efficient.

    参考文献
    [1] Domingos P, Richardson M. Mining the network value of customers. Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco:ACM, 2001. 57-66.
    [2] Kempe D, Kleinberg J, Tardos É. Maximizing the spread of influence through a social network. Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, DC:ACM, 2003. 137-146.
    [3] 单菁, 申德荣, 寇月, 等. 基于重叠社区搜索的传播热点选择方法. 软件学报, 2017, 28(2):326-340.[doi:10.13328/j.cnki.jos.005117
    [4] Wang ZX, Sun CC, Xi JK, et al. Influence maximization in social graphs based on community structure and node coverage gain. Future Generation Computer Systems, 2021, 118:327-338.[doi:10.1016/j.future.2021.01.025
    [5] Liu XY, Wu SY, Liu C, et al. Social network node influence maximization method combined with degree discount and local node optimization. Social Network Analysis and Mining, 2021, 11(1):31.[doi:10.1007/s13278-021-00733-3
    [6] Qiu LQ, Yang ZQ, Zhu SW, et al. LTHS:A heuristic algorithm based on local two-hop search strategy for influence maximization in social networks. Journal of Intelligent & Fuzzy Systems, 2021, 41(2):3161-3172
    [7] Nie TY, Guo Z, Zhao K, et al. Using mapping entropy to identify node centrality in complex networks. Physica A:Statistical Mechanics and Its Applications, 2016, 453:290-297.[doi:10.1016/j.physa.2016.02.009
    [8] Antelmi A, Cordasco G, Spagnuolo C, et al. Social influence maximization in hypergraphs. Entropy, 2021, 23(7):796.[doi:10.3390/e23070796
    [9] Li CT, Lin SD, Shan MK. Influence propagation and maximization for heterogeneous social networks. Proceedings of the 21st International Conference on World Wide Web. Lyon:ACM, 2012. 559-560.
    [10] Yang YD, Zhou LH, Jin Z, et al. Meta path-based information entropy for modeling social influence in heterogeneous information networks. Proceedings of the 20th IEEE International Conference on Mobile Data Management (MDM). Hong Kong:IEEE, 2019. 557-562.
    [11] Wu GH, Gao XF, Yan G, et al. Parallel greedy algorithm to multiple influence maximization in social network. ACM Transactions on Knowledge Discovery from Data, 2021, 15(3):43
    [12] Biswas TK, Abbasi A, Chakrabortty RK. An MCDM integrated adaptive simulated annealing approach for influence maximization in social networks. Information Sciences, 2021, 556:27-48.[doi:10.1016/j.ins.2020.12.048
    [13] Xie XQ, Li JH, Sheng Y, et al. Competitive influence maximization considering inactive nodes and community homophily. Knowledge-based Systems, 2021, 233:107497.[doi:10.1016/j.knosys.2021.107497
    [14] Tong J, Shi LL, Liu L, et al. A novel influence maximization algorithm for a competitive environment based on social media data analytics. Big Data Mining and Analytics, 2022, 5(2):130-139.[doi:10.26599/BDMA.2021.9020024
    [15] Kuhnle A, Alim MA, Li X, et al. Multiplex influence maximization in online social networks with heterogeneous diffusion models. IEEE Transactions on Computational Social Systems, 2018, 5(2):418-429.[doi:10.1109/TCSS.2018.2813262
    [16] Keikha MM, Rahgozar M, Asadpour M, et al. Influence maximization across heterogeneous interconnected networks based on deep learning. Expert Systems with Applications, 2020, 140:112905.[doi:10.1016/j.eswa.2019.112905
    [17] Li Y, Li LL, Liu YJ, et al. MAHE-IM:Multiple aggregation of heterogeneous relation embedding for influence maximization on heterogeneous information network. Expert Systems with Applications, 2022, 202:117289.[doi:10.1016/j.eswa.2022.117289
    [18] Deng XH, Long F, Li B, et al. An influence model based on heterogeneous online social network for influence maximization. IEEE Transactions on Network Science and Engineering, 2020, 7(2):737-749.[doi:10.1109/TNSE.2019.2920371
    [19] 徐智敏, 周丽华. 异质信息网络中基于元结构的影响力最大化. 计算机仿真, 2021.
    [20] 刘佳玮, 石川, 杨成, 等. 基于异质信息网络的推荐系统研究综述. 信息安全学报, 2021, 6(5):1-16.[doi:10.19363/J.cnki.cn10-1380/tn.2021.09.01
    [21] Sun YZ, Han JW. Mining heterogeneous information networks:A structural analysis approach. ACM SIGKDD Explorations Newsletter, 2012, 14(2):20-28
    [22] Sun YZ, Han JW, Yan XF, et al. PathSim:Meta path-based top-K similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 2011, 4(11):992-1003.[doi:10.14778/3402707.3402736
    [23] Liu YS, Ye XF, Yu CY, et al. TPSC:A module detection method based on topology potential and spectral clustering in weighted networks and its application in gene co-expression module discovery. BMC Bioinformatics, 2021, 22(S4):111.[doi:10.1186/s12859-021-03964-5
    [24] Zhang JX, Chen DB, Dong Q, et al. Identifying a set of influential spreaders in complex networks. Scientific Reports, 2016, 6:27823.[doi:10.1038/srep27823
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐智敏,周丽华,刘超.基于社区与结构熵的异质网络影响力最大化.计算机系统应用,2023,32(1):257-265

复制
分享
文章指标
  • 点击次数:827
  • 下载次数: 1693
  • HTML阅读次数: 1671
  • 引用次数: 0
历史
  • 收稿日期:2022-06-07
  • 最后修改日期:2022-07-06
  • 在线发布日期: 2022-09-01
文章二维码
您是第11304388位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号