基于深度学习的嵌入式目标追踪研究进展
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

浙江省“领雁”研发攻关计划(2022C01098)


Research Progress of Object Tracking by Deep Learning in Embedded System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 增强出版
  • |
  • 文章评论
    摘要:

    作为计算机视觉领域的基本问题之一, 目标追踪具有广泛的应用场景. 随着硬件算力和深度学习方法的进步, 常规的深度学习目标追踪方法精度越来越高, 但其模型参数量庞大, 计算资源和能耗需求高. 近年来, 随着无人机和智能物联网应用的蓬勃发展, 如何在存储空间和算力有限、低功耗需求的嵌入式硬件环境中进行实时目标跟踪, 成为当前研究的热点. 本文对面向嵌入式应用的目标追踪方法进行了分析综述, 包括相关滤波结合深度学习的目标追踪方法、基于轻量神经网络的目标跟踪方法, 并总结了深度学习模型部署流程和无人机等领域的嵌入式目标追踪典型应用实例, 最后对未来研究重点进行了展望.

    Abstract:

    Object tracking, a basic problem in computer vision, has a wide range of application scenarios. Due to the advance in the computational capacity of hardware and deep learning methods, conventional deep learning methods for object tracking have higher precision, but they face the problems of massive model parameters and high demand for computational resources and power consumption. In recent years, with the booming development of unmanned aerial vehicle (UAV) and Internet of Things (IoT) applications, a great deal of research focuses on how to achieve real-time tracking in embedded hardware environment with limited storage space and computational capacity and low power consumption. Firstly, object tracking algorithms in the embedded environment, including the ones combining correlation filters with deep learning and those based on lightweight neural networks, are analyzed and discussed. Secondly, deployment procedures of deep learning models and classical embedded object tracking applications, such as those in UAVs, are summarized. Finally, future research directions are given.

    参考文献
    相似文献
    引证文献
引用本文

董博,陈华,龚勇.基于深度学习的嵌入式目标追踪研究进展.计算机系统应用,2023,32(1):12-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-24
  • 最后修改日期:2022-05-22
  • 录用日期:
  • 在线发布日期: 2022-09-23
  • 出版日期:
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号