基于深度学习的嵌入式目标追踪研究进展
作者:
基金项目:

浙江省“领雁”研发攻关计划(2022C01098)


Research Progress of Object Tracking by Deep Learning in Embedded System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [93]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    作为计算机视觉领域的基本问题之一, 目标追踪具有广泛的应用场景. 随着硬件算力和深度学习方法的进步, 常规的深度学习目标追踪方法精度越来越高, 但其模型参数量庞大, 计算资源和能耗需求高. 近年来, 随着无人机和智能物联网应用的蓬勃发展, 如何在存储空间和算力有限、低功耗需求的嵌入式硬件环境中进行实时目标跟踪, 成为当前研究的热点. 本文对面向嵌入式应用的目标追踪方法进行了分析综述, 包括相关滤波结合深度学习的目标追踪方法、基于轻量神经网络的目标跟踪方法, 并总结了深度学习模型部署流程和无人机等领域的嵌入式目标追踪典型应用实例, 最后对未来研究重点进行了展望.

    Abstract:

    Object tracking, a basic problem in computer vision, has a wide range of application scenarios. Due to the advance in the computational capacity of hardware and deep learning methods, conventional deep learning methods for object tracking have higher precision, but they face the problems of massive model parameters and high demand for computational resources and power consumption. In recent years, with the booming development of unmanned aerial vehicle (UAV) and Internet of Things (IoT) applications, a great deal of research focuses on how to achieve real-time tracking in embedded hardware environment with limited storage space and computational capacity and low power consumption. Firstly, object tracking algorithms in the embedded environment, including the ones combining correlation filters with deep learning and those based on lightweight neural networks, are analyzed and discussed. Secondly, deployment procedures of deep learning models and classical embedded object tracking applications, such as those in UAVs, are summarized. Finally, future research directions are given.

    参考文献
    [1] Yilmaz A, Javed O, Shah M. Object tracking:A survey. ACM Computing Surveys, 2006, 38(4):13-57.[doi:10.1145/1177352.1177355
    [2] Choudhary T, Mishra V, Goswami A, et al. A comprehensive survey on model compression and acceleration. Artificial Intelligence Review, 2020, 53(7):5113-5155.[doi:10.1007/s10462-020-09816-7
    [3] Bolme DS, Beveridge JR, Draper BA, et al. Visual object tracking using adaptive correlation filters. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco:IEEE, 2010. 2544-2550.
    [4] Henriques JF, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels. Proceedings of the 12th European Conference on Computer Vision. Florence:Springer, 2012. 702-715.
    [5] Danelljan M, Khan FS, Felsberg M, et al. Adaptive color attributes for real-time visual tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Columbus:IEEE, 2014. 1090-1097.
    [6] Henriques JF, Caseiro R, Martins P, et al. High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.[doi:10.1109/TPAMI.2014.2345390
    [7] Ma C, Huang JB, Yang XK, et al. Hierarchical convolutional features for visual tracking. Proceedings of IEEE International Conference on Computer Vision. Santiago:IEEE, 2015. 3074-3082.
    [8] Danelljan M, Häger G, Khan FS, et al. Convolutional features for correlation filter based visual tracking. Proceedings of IEEE International Conference on Computer Vision Workshop. Santiago:IEEE, 2015. 621-629.
    [9] Choi J, Chang HJ, Fischer T, et al. Context-aware deep feature compression for high-speed visual tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 479-488.
    [10] Cheng X, Zhang YF, Zhou L, et al. Visual tracking via auto-encoder pair correlation filter. IEEE Transactions on Industrial Electronics, 2020, 67(4):3288-3297.[doi:10.1109/TIE.2019.2913815
    [11] Gundogdu E, Alatan AA. Good features to correlate for visual tracking. IEEE Transactions on Image Processing, 2018, 27(5):2526-2540.[doi:10.1109/TIP.2018.2806280
    [12] Wu QQ, Yan Y, Liang YJ, et al. DSNet:Deep and shallow feature learning for efficient visual tracking. Proceedings of the 14th Asian Conference on Computer Vision. Perth:Springer, 2019. 119-134.
    [13] Wang XY, Li HX, Li Y, et al. Deep tracking with objectness. Proceedings of IEEE International Conference on Image Processing. Beijing:IEEE, 2017. 660-664.
    [14] Ma C, Huang JB, Yang XK, et al. Robust visual tracking via hierarchical convolutional features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(11):2709-2723.[doi:10.1109/TPAMI.2018.2865311
    [15] Li F, Yao YJ, Li PH, et al. Integrating boundary and center correlation filters for visual tracking with aspect ratio variation. Proceedings of IEEE International Conference on Computer Vision Workshops. Venice:IEEE, 2017. 2001-2009.
    [16] Zhang P, Zhuo T, Huang W, et al. Online object tracking based on CNN with spatial-temporal saliency guided sampling. Neurocomputing, 2017, 257:115-127.[doi:10.1016/j.neucom.2016.10.073
    [17] Tang FH, Lu XK, Zhang XY, et al. Deep feature tracking based on interactive multiple model. Neurocomputing, 2019, 333:29-40.[doi:10.1016/j.neucom.2018.12.035
    [18] Li YM, Fu CH, Huang ZY, et al. Keyfilter-aware real-time UAV object tracking. Proceedings of IEEE International Conference on Robotics and Automation. Paris:IEEE, 2020. 193-199.
    [19] Fu CH, He YJ, Lin FL, et al. Robust multi-kernelized correlators for UAV tracking with adaptive context analysis and dynamic weighted filters. Neural Computing and Applications, 2020, 32(16):12591-12607.[doi:10.1007/s00521-020-04716-x
    [20] Dai KN, Wang D, Lu HC, et al. Visual tracking via adaptive spatially-regularized correlation filters. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019. 4665-4674.
    [21] Danelljan M, Bhat G, Khan FS, et al. ECO:Efficient convolution operators for tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 6931-6939.
    [22] Danelljan M, Robinson A, Khan FS, et al. Beyond correlation filters:Learning continuous convolution operators for visual tracking. Proceedings of the 14th European Conference on Computer Vision. Amsterdam:Springer, 2016. 472-488.
    [23] Liu MJ, Jin CB, Yang B, et al. Occlusion-robust object tracking based on the confidence of online selected hierarchical features. IET Image Processing, 2018, 12(11):2023-2029.[doi:10.1049/iet-ipr.2018.5454
    [24] Che MQ, Wang RL, Lu Y, et al. Channel pruning for visual tracking. Proceedings of the 15th European Conference on Computer Vision. Munich:Springer, 2019. 70-82.
    [25] Xu TY, Feng ZH, Wu XJ, et al. Joint group feature selection and discriminative filter learning for robust visual object tracking. Proceedings of IEEE/CVF International Conference on Computer Vision. Seoul:IEEE, 2019. 7949-7959.
    [26] Qi YK, Zhang SP, Qin L, et al. Hedged deep tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. 4303-4311.
    [27] He ZQ, Fan YR, Zhuang JF, et al. Correlation filters with weighted convolution responses. Proceedings of IEEE International Conference on Computer Vision Workshops. Venice:IEEE, 2017. 1992-2000.
    [28] Bhat G, Johnander J, Danelljan M, et al. Unveiling the power of deep tracking. Proceedings of the 15th European Conference on Computer Vision. Munich:Springer, 2018. 493-509.
    [29] Wang N, Zhou WG, Tian Q, et al. Multi-cue correlation filters for robust visual tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 4844-4853.
    [30] Ma YP, Yuan C, Gao P, et al. Efficient multi-level correlating for visual tracking. Proceedings of the 14th Asian Conference on Computer Vision. Perth:Springer, 2019. 452-465.
    [31] Sun C, Wang D, Lu HC, et al. Correlation tracking via joint discrimination and reliability learning. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 489-497.
    [32] Fu CH, Huang ZY, Li YM, et al. Boundary effect-aware visual tracking for UAV with online enhanced background learning and multi-frame consensus verification. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Macao:IEEE, 2019. 4415-4422.
    [33] Fu CH, Xiong WJ, Lin FL, et al. Surrounding-aware correlation filter for UAV tracking with selective spatial regularization. Signal Processing, 2020, 167:107324.[doi:10.1016/j.sigpro.2019.107324
    [34] Du F, Liu P, Zhao W, et al. Spatial-temporal adaptive feature weighted correlation filter for visual tracking. Signal Processing:Image Communication, 2018, 67:58-70.[doi:10.1016/j.image.2018.05.013
    [35] Sun YX, Sun C, Wang D, et al. ROI pooled correlation filters for visual tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019. 5776-5784.
    [36] Lukežic A, Vojír T, Zajc LC, et al. Discriminative correlation filter with channel and spatial reliability. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 4847-4856.
    [37] Li DD, Wen GJ, Kuai YL, et al. Learning target-aware correlation filters for visual tracking. Journal of Visual Communication and Image Representation, 2019, 58:149-159.[doi:10.1016/j.jvcir.2018.11.036
    [38] Li F, Tian C, Zuo WM, et al. Learning spatial-temporal regularized correlation filters for visual tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 4904-4913.
    [39] Rout L, Mishra D, Gorthi RKSS. WAEF:Weighted aggregation with enhancement filter for visual object tracking. Proceedings of the 15th European Conference on Computer Vision. Munich:Springer, 2019. 83-99.
    [40] Li SJ, Zhao S, Cheng B, et al. Robust visual tracking via hierarchical particle filter and ensemble deep features. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1):179-191.[doi:10.1109/TCSVT.2018.2889457
    [41] Zhang TZ, Xu CS, Yang MH. Multi-task correlation particle filter for robust object tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 4819-4827.
    [42] Mozhdehi RJ, Medeiros H. Deep convolutional particle filter for visual tracking. Proceedings of IEEE International Conference on Image Processing. Beijing:IEEE, 2017. 3650-3654.
    [43] Mozhdehi RJ, Reznichenko Y, Siddique A, et al. Deep convolutional particle filter with adaptive correlation maps for visual tracking. Proceedings of the 25th IEEE International Conference on Image Processing. Athens:IEEE, 2018. 798-802.
    [44] Valmadre J, Bertinetto L, Henriques J, et al. End-to-end representation learning for correlation filter based tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 5000-5008.
    [45] Wang Q, Gao J, Xing JL, et al. DCFNet:Discriminant correlation filters network for visual tracking. arXiv:1704.04057, 2017.
    [46] Kuai YL, Wen GJ, Li DD. Multi-task hierarchical feature learning for real-time visual tracking. IEEE Sensors Journal, 2019, 19(5):1961-1968.[doi:10.1109/JSEN.2018.2883593
    [47] Liu GE, Liu GZ. Integrating multi-level convolutional features for correlation filter tracking. Proceedings of the 25th IEEE International Conference on Image Processing. Athens:IEEE, 2018. 3029-3033.
    [48] Guo Q, Feng W, Zhou C, et al. Learning dynamic siamese network for visual object tracking. Proceedings of IEEE International Conference on Computer Vision. Venice:IEEE, 2017. 1781-1789.
    [49] Tan WR, Lai SH. i-Siam:Improving siamese tracker with distractors suppression and long-term strategies. Proceedings of IEEE/CVF International Conference on Computer Vision Workshop. Seoul:IEEE, 2019. 55-63.
    [50] Li DD, Wen GJ, Kuai YL, et al. End-to-end feature integration for correlation filter tracking with channel attention. IEEE Signal Processing Letters, 2018, 25(12):1815-1819.[doi:10.1109/LSP.2018.2877008
    [51] Zhu Z, Wu W, Zou W, et al. End-to-end flow correlation tracking with spatial-temporal attention. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 548-557.
    [52] Wang Q, Teng Z, Xing J, et al. Learning attentions:Residual attentional siamese network for high performance online visual tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 4854-4863.
    [53] Wang N, Song YB, Ma C, et al. Unsupervised deep tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach:IEEE, 2019. 1308-1317.
    [54] Song YB, Ma C, Gong LJ, et al. CREST:Convolutional residual learning for visual tracking. Proceedings of IEEE International Conference on Computer Vision. Venice:IEEE, 2017. 2574-2583.
    [55] Zhu Z, Huang G, Zou W, et al. UCT:Learning unified convolutional networks for real-time visual tracking. Proceedings of IEEE International Conference on Computer Vision Workshops. Venice:IEEE, 2017. 1973-1982.
    [56] Han ZJ, Wang P, Ye QX. Adaptive discriminative deep correlation filter for visual object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1):155-166.[doi:10.1109/TCSVT.2018.2888492
    [57] Lukežič A, Matas J, Kristan M. D3S-A discriminative single shot segmentation tracker. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020. 7131-7140.
    [58] Yang TY, Xu PF, Hu RB, et al. ROAM:Recurrently optimizing tracking model. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020. 6717-6726.
    [59] Fan H, Ling HB. Parallel tracking and verifying:A framework for real-time and high accuracy visual tracking. Proceedings of IEEE International Conference on Computer Vision. Venice:IEEE, 2017. 5487-5495.
    [60] Choi J, Chang HJ, Yun S, et al. Attentional correlation filter network for adaptive visual tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu:IEEE, 2017. 4828-4837.
    [61] Xie YC, Xiao JM, Huang KZ, et al. Correlation filter selection for visual tracking using reinforcement learning. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(1):192-204.[doi:10.1109/TCSVT.2018.2889488
    [62] Ma C, Xu Y, Ni BB, et al. When correlation filters meet convolutional neural networks for visual tracking. IEEE Signal Processing Letters, 2016, 23(10):1454-1458.[doi:10.1109/LSP.2016.2601691
    [63] Kuai YL, Wen GJ, Li DD. When correlation filters meet fully-convolutional siamese networks for distractor-aware tracking. Signal Processing:Image Communication, 2018, 64:107-117.[doi:10.1016/j.image.2018.03.002
    [64] Li HX, Wang XY, Shen FM, et al. Real-time deep tracking via corrective domain adaptation. IEEE Transactions on Circuits and Systems for Video Technology, 2019, 29(9):2600-2612.[doi:10.1109/TCSVT.2019.2923639
    [65] Tu JZ, Chen CL, Xu QM, et al. Resource-efficient visual multiobject tracking on embedded device. IEEE Internet of Things Journal, 2022, 9(11):8531-8543.[doi:10.1109/JIOT.2021.3115102
    [66] Liu QL, Guo Q, Wang W, et al. An automatic detection algorithm of metro passenger boarding and alighting based on deep learning and optical flow. IEEE Transactions on Instrumentation and Measurement, 2021, 70:5006613
    [67] Vu HN, Pham C, Dung NM, et al. Detecting and tracking sinkholes using multi-level convolutional neural networks and data association. IEEE Access, 2020, 8:132625-132641.[doi:10.1109/ACCESS.2020.3010885
    [68] Chen C, Liu B, Wan SH, et al. An edge traffic flow detection scheme based on deep learning in an intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3):1840-1852.[doi:10.1109/TITS.2020.3025687
    [69] Lu JX, Lin JC, Vinay MS, et al. Fusion technology of radar and RGB camera sensors for object detection and tracking and its embedded system implementation. Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference. Auckland:IEEE, 2020. 1234-1242.
    [70] Liu MJ, Jin CB, Park D, et al. Integrated detection and tracking for ADAS using deep neural network. Proceedings of IEEE Conference on Multimedia Information Processing and Retrieval. San Jose:IEEE, 2019. 71-76.
    [71] Xiao C, Sun H, Cai YM, et al. Method for detecting and tracking foreign objects in substation videos based on embedded AI. Proceedings of Power System and Green Energy Conference. Shanghai:IEEE, 2021. 583-587.
    [72] Hsu YH, Chang SY, Guo JI. A multiple vehicle tracking and counting method and its realization on an embedded system with a surveillance camera. Proceedings of IEEE International Conference on Consumer Electronics-Taiwan. Taichung:IEEE, 2018. 1-2.
    [73] Zhu YP, Wang T, Zhu SQ. Real-time monocular 3D people localization and tracking on embedded system. Proceedings of the 6th IEEE International Conference on Advanced Robotics and Mechatronics. Chongqing:IEEE, 2021. 797-802.
    [74] Vu QD, Chung ST. Real-time robust human tracking based on Lucas-Kanade optical flow and deep detection for embedded surveillance. Proceedings of the 8th International Conference of Information and Communication Technology for Embedded Systems. Chonburi:IEEE, 2017. 1-6.
    [75] Ahmed I, Din S, Jeon G, et al. Towards collaborative robotics in top view surveillance:A framework for multiple object tracking by detection using deep learning. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7):1253-1270.[doi:10.1109/JAS.2020.1003453
    [76] Sreekumar UK, Devaraj R, Li Q, et al. TPCAM:Real-time traffic pattern collection and analysis model based on deep learning. Proceedings of IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. San Francisco:IEEE, 2017. 1-4.
    [77] Zhang R, Zhang YL, Zhang XY. Tracking in-cabin astronauts using deep learning and head motion clues. IEEE Access, 2021, 9:2680-2693.[doi:10.1109/ACCESS.2020.3046730
    [78] Fernández-Sanjurjo M, Mucientes M, Brea VM. Real-time multiple object visual tracking for embedded GPU systems. IEEE Internet of Things Journal, 2021, 8(11):9177-9188.[doi:10.1109/JIOT.2021.3056239
    [79] Yang CL, Chen ZW, Zhang Y, et al. Design of embedded target tracking system based on MobileNet and KCF. Proceedings of the 15th IEEE Conference on Industrial Electronics and Applications. Kristiansand:IEEE, 2020. 1578-1581.
    [80] Le MC, Le MH. Human detection and tracking for autonomous human-following quadcopter. Proceedings of International Conference on System Science and Engineering. Dong Hoi:IEEE, 2019. 6-11.
    [81] Mao YH, He ZZ, Ma Z, et al. Efficient convolution neural networks for object tracking using separable convolution and filter pruning. IEEE Access, 2019, 7:106466-106474.[doi:10.1109/ACCESS.2019.2932733
    [82] Dinh M, Morris B, Kim Y. UAS-based object tracking via deep learning. Proceedings of the 9th IEEE Annual Computing and Communication Workshop and Conference. Las Vegas:IEEE, 2019. 217-275.
    [83] Zhang BY, Li X, Han J, et al. MiniTracker:A lightweight CNN-based system for visual object tracking on embedded device. Proceedings of the 23rd IEEE International Conference on Digital Signal Processing. Shanghai:IEEE, 2018. 1-5.
    [84] Yan B, Peng HW, Wu K, et al. LightTrack:Finding lightweight neural networks for object tracking via one-shot architecture search. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville:IEEE, 2021. 15175-15184.
    [85] Blatter P, Kanakis M, Danelljan M, et al. Efficient visual tracking with exemplar transformers. arXiv:2112.09686, 2022.
    [86] Borsuk V, Vei R, Kupyn O, et al. FEAR:Fast, efficient, accurate and robust visual tracker. arXiv:2112.07957, 2022.
    [87] Jacob B, Kligys S, Chen B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City:IEEE, 2018. 2704-2713.
    [88] Nagel M, Fournarakis M, Amjad RA, et al. A white paper on neural network quantization. arXiv:2106.08295, 2021.
    [89] Yang B, Cao XL, Yuen C, et al. Offloading optimization in edge computing for deep-learning-enabled target tracking by Internet of UAVs. IEEE Internet of Things Journal, 2021, 8(12):9878-9893.[doi:10.1109/JIOT.2020.3016694
    [90] Lu ZC, Rathod V, Votel R, et al. RetinaTrack:Online single stage joint detection and tracking. Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle:IEEE, 2020. 14656-14666.
    [91] Chang XP, Pan HH, Sun WC, et al. YolTrack:Multitask learning based real-time multiobject tracking and segmentation for autonomous vehicles. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(12):5323-5333.[doi:10.1109/TNNLS.2021.3056383
    [92] Dahal A, Hossen J, Sumanth C, et al. DeepTrailerAssist:Deep learning based trailer detection, tracking and articulation angle estimation on automotive rear-view camera. Proceedings of IEEE/CVF International Conference on Computer Vision Workshop. Seoul:IEEE, 2019. 2339-2346.
    [93] Blanco-Filgueira B, García-Lesta D, Fernández-Sanjurjo M, et al. Deep learning-based multiple object visual tracking on embedded system for IoT and mobile edge computing applications. IEEE Internet of Things Journal, 2019, 6(3):5423-5431.[doi:10.1109/JIOT.2019.2902141
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

董博,陈华,龚勇.基于深度学习的嵌入式目标追踪研究进展.计算机系统应用,2023,32(1):12-28

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-24
  • 最后修改日期:2022-05-22
  • 在线发布日期: 2022-09-23
文章二维码
您是第11482023位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号