摘要:入侵检测技术作为计算机防护的主要技术手段, 因具有适应性强、能识别新型攻击的优点而被广泛研究, 然而识别率和误报率难以保证是该技术的主要瓶颈. 为了提升异常检测技术的识别率并降低误报率, 提出了一种终端级入侵检测算法(terminal-level intrusion detection algorithm, TL-IDA). 在数据预处理阶段把终端日志切割成连续的小块命令序列, 并引入统计学的常用指标为命令序列构建特征向量, 再使用TL-IDA算法通过特征向量对用户建模. 在此基础上, 还提出了一种滑动窗口判别法, 用于判断系统是否遭受攻击, 从而提升入侵检测算法的性能. 实验结果表明, TL-IDA算法的平均识别率和误报率分别达到了83%和15%, 优于同类的基于异常技术的终端级入侵检测算法ADMIT、隐马尔可夫模型法等.