多通道连续卷积神经网络脑电信号情绪识别
作者:

Emotion Recognition of EEG Signals Based on Multi-channel and Continuous CNN
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对不同个体的脑电信号差异大且易受到环境因素影响的问题, 结合去基线干扰及脑电通道选择方法, 提出一种基于连续卷积神经网络的情绪分类识别算法. 首先进行基线信号的微分熵(differential entropy, DE)特征的选取研究, 将数据处理为多通道输入后使用连续卷积神经网络进行分类实验, 然后选择最佳电极个数. 实验结果表明, 将实验脑电信号微分熵与被试者实验脑电前一秒的基线信号微分熵的差值映射为二维矩阵后, 在频率维度组合为多通道的形式作为连续卷积神经网络的输入, 在22通道上唤醒度和效价的分类平均准确率为95.63%和95.13%, 接近32通道的平均准确率.

    Abstract:

    Individual electroencephalogram (EEG) signals are different and vulnerable to environmental factors. In view of these problems, this study adopts methods of removing baseline interference and EEG channel selection and proposes an emotion classification and recognition algorithm based on a continuous convolutional neural network (CNN). Firstly, the selection of differential entropy (DE) characteristics of baseline signals is studied. After the data is processed into multi-channel input, the continuous CNN is used for classification experiments, and then the optimal number of electrodes is determined. The experimental results show that after the difference between the DE of experimental EEG signals and that of baseline signals of the subject one second before the experimental EEG is mapped into a two-dimensional matrix, and the frequency dimension is turned into a multi-channel form to serve as the input of the continuous CNN, the average classification accuracy of arousal and valence on 22 channel is 95.63% and 95.13%, respectively, which are close to that on 32 channel.

    参考文献
    [1] Hämäläinen M, Hari R, Ilmoniemi RJ, et al. Magnetoencephalography-Theory, instrumentation, and applications to noninvasive studies of the working human brain. Reviews of Modern Physics, 1993, 65(2):413.[doi:10.1103/RevModPhys.65.413
    [2] Liu SQ, Wang X, Zhao L, et al. Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(5):1710-1721.[doi:10.1109/TCBB.2020.3018137
    [3] Chen T, Ju SH, Ren FJ, et al. EEG emotion recognition model based on the LIBSVM classifier. Measurement, 2020, 164:108047.[doi:10.1016/j.measurement.2020.108047
    [4] 刘鹏, 乔晓艳. 基于栈式自编码神经网络的脑电信号情绪识别. 测试技术学报, 2021, 35(2):145-151.[doi:10.3969/j.issn.1671-7449.2021.02.009
    [5] Alhagry S, Fahmy AA, El-Khoribi RA. Emotion recognition based on EEG using LSTM recurrent neural network. International Journal of Advanced Computer Science and Applications, 2017, 8(10):355-358
    [6] Yang YL, Wu QF, Fu YZ, et al. Continuous convolutional neural network with 3D input for EEG-based emotion recognition. Proceedings of the 25th International Conference on Neural Information Processing. Berlin, Siem Reap:Springer, 2018. 433-443.
    [7] Yin YQ, Zheng XW, Hu B, et al. EEG emotion recognition using fusion model of graph convolutional neural networks and LSTM. Applied Soft Computing, 2021, 100:106954.[doi:10.1016/j.asoc.2020.106954
    [8] Zhang X, Yao LN, Kanhere SS, et al. MindID:Person identification from brain waves through attention-based recurrent neural network. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2018, 2(3):149
    [9] Zheng WL, Lu BL. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks. IEEE Transactions on Autonomous Mental Development, 2015, 7(3):162-175.[doi:10.1109/TAMD.2015.2431497
    [10] Shi LC, Jiao YY, Lu BL. Differential entropy feature for EEG-based vigilance estimation. Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Osaka:IEEE, 2013. 6627-6630.
    [11] Jirayucharoensak S, Pan-Ngum S, Israsena P. EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. The Scientific World Journal, 2014, 2014:627892
    [12] Acharya JN, Hani AJ, Cheek J, et al. American clinical neurophysiology society guideline 2:Guidelines for standard electrode position nomenclature. The Neurodiagnostic Journal, 2016, 56(4):245-252.[doi:10.1080/21646821.2016.1245558
    [13] 程越, 刘志刚. 基于轻量型卷积神经网络的交通标志识别方法. 计算机系统应用, 2020, 29(2):198-204.[doi:10.15888/j.cnki.csa.007264
    [14] 涂文博, 袁贞明, 俞凯. 无池化层卷积神经网络的中文分词方法. 计算机工程与应用, 2020, 56(2):120-126.[doi:10.3778/j.issn.1002-8331.1809-0177
    [15] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas:IEEE, 2016. 770-778.
    [16] Mehrabian A. Pleasure-arousal-dominance:A general framework for describing and measuring individual differences in temperament. Current Psychology, 1996, 14(4):261-292.[doi:10.1007/BF02686918
    [17] Koelstra S, Muhl C, Soleymani M, et al. DEAP:A database for emotion analysis using physiological signals. IEEE Transactions on Affective Computing, 2012, 3(1):18-31.[doi:10.1109/T-AFFC.2011.15
    [18] Zheng WL, Guo HT, Lu BL. Revealing critical channels and frequency bands for emotion recognition from EEG with deep belief network. Proceedings of the 7th International IEEE/EMBS Conference on Neural Engineering. Montpellier:IEEE, 2015. 154-157.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁椰舷,李婷,姬昊余.多通道连续卷积神经网络脑电信号情绪识别.计算机系统应用,2023,32(1):399-405

复制
分享
文章指标
  • 点击次数:815
  • 下载次数: 2287
  • HTML阅读次数: 2096
  • 引用次数: 0
历史
  • 收稿日期:2022-05-22
  • 最后修改日期:2022-06-20
  • 在线发布日期: 2022-08-26
文章二维码
您是第11348851位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号