基于深度森林的人机协同工业制品表面缺陷识别
作者:

Human-machine Collaborative Identification of Industrial Product Surface Defects Based on Deep Forest
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对工业制品缺陷分类存在的样本图像少、分类准确性不足和模型训练耗时长等问题, 提出了一种基于深度森林的人机协同分类模型. 该模型首先通过深度森林对样本图像进行初步识别, 经多粒度扫描模块和级联森林模块提取特征, 得到初始预测结果并分离出识别困难的样本图像; 然后采用人机协同的策略, 采用人工方式随机标注部分识别困难的样本, 再利用K近邻算法对剩余识别困难的样本进行再分类. 通过在公开数据集以及生产线实际采集的真实数据上的实验结果表明, 改进的分类模型在工业制品表面缺陷数据集上的性能优于基线算法.

    Abstract:

    A human-machine collaborative classification model based on the deep forest is proposed to solve the problems encountered in the classification of defects in industrial products, such as sample image shortage, insufficient classification precision, and time-consuming model training. For this purpose, sample images are preliminarily identified with deep forest, and their features are extracted by the multi-granularity scanning module and the cascaded forest module. The initial estimation result is thereby obtained, and sample images difficult to identify are separated out. Then, the human-machine collaboration strategy is employed. Specifically, some of the sample images difficult to identify are randomly labeled manually, and the remaining ones are reclassified with the K-nearest neighbor algorithm. The experimental results on the public dataset and the real data collected from the production line indicate that the improved classification model offers performance superior to that of the baseline algorithm on the dataset of industrial product surface defects.

    参考文献
    [1] He Y, Song KC, Meng QG, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493–1504. [doi: 10.1109/TIM.2019.2915404
    [2] Dong HW, Song KC, He Y, et al. PGA-net: Pyramid feature fusion and global context attention network for automated surface defect detection. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7448–7458. [doi: 10.1109/TII.2019.2958826
    [3] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述. 自动化学报, 2021, 47(5): 1017–1034. [doi: 10.16383/j.aas.c190811
    [4] 谢芬. 基于机器视觉的表面缺陷检测技术研究[硕士学位论文]. 南京: 南京航空航天大学, 2019.
    [5] Hanzaei SH, Afshar A, Barazandeh F. Automatic detection and classification of the ceramic tiles’ surface defects. Pattern Recognition, 2017, 66: 174–189. [doi: 10.1016/j.patcog.2016.11.021
    [6] Sun J, Li C, Wu XJ, et al. An effective method of weld defect detection and classification based on machine vision. IEEE Transactions on Industrial Informatics, 2019, 15(12): 6322–6333. [doi: 10.1109/TII.2019.2896357
    [7] Pasadas DJ, Ramos HG, Feng B, et al. Defect classification with SVM and wideband excitation in multilayer aluminum plates. IEEE Transactions on Instrumentation and Measurement, 2020, 69(1): 241–248. [doi: 10.1109/TIM.2019.2893009
    [8] Li XK, Guo YC, Li YM. Particle swarm optimization-based SVM for classification of cable surface defects of the cable-stayed bridges. IEEE Access, 2020, 8: 44485–44492. [doi: 10.1109/ACCESS.2019.2961755
    [9] Masci J, Meier U, Ciresan D, et al. Steel defect classification with max-pooling convolutional neural networks. The 2012 International Joint Conference on Neural Networks (IJCNN). Brisbane: IEEE, 2012. 1–6.
    [10] Cheon S, Lee H, Kim CO, et al. Convolutional neural network for wafer surface defect classification and the detection of unknown defect class. IEEE Transactions on Semiconductor Manufacturing, 2019, 32(2): 163–170. [doi: 10.1109/TSM.2019.2902657
    [11] 张光建, 朱婵. 卷积神经网络自动分类手机外壳划痕. 计算机系统应用, 2020, 29(11): 271–275. [doi: 10.15888/j.cnki.csa.007674
    [12] Saqlain M, Abbas Q, Lee JY. A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing processes. IEEE Transactions on Semiconductor Manufacturing, 2020, 33(3): 436–444. [doi: 10.1109/TSM.2020.2994357
    [13] Deitsch S, Christlein V, Berger S, et al. Automatic classification of defective photovoltaic module cells in electroluminescence images. Solar Energy, 2019, 185: 455–468. [doi: 10.1016/j.solener.2019.02.067
    [14] Aydin I, Akin E, Karakose M. Defect classification based on deep features for railway tracks in sustainable transportation. Applied Soft Computing, 2021, 111: 107706. [doi: 10.1016/J.ASOC.2021.107706
    [15] Sassi P, Tripicchio P, Avizzano CA. A smart monitoring system for automatic welding defect detection. IEEE Transactions on Industrial Electronics, 2019, 66(12): 9641–9650. [doi: 10.1109/TIE.2019.2896165
    [16] Zhou ZH, Feng J. Deep forest. National Science Review, 2019, 6(1): 74–86. [doi: 10.1093/nsr/nwy108
    [17] Huang G, Liu Z, van der Maaten L, et al. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 2261–2269.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

阎昊,刘奕阳.基于深度森林的人机协同工业制品表面缺陷识别.计算机系统应用,2022,31(12):280-286

复制
分享
文章指标
  • 点击次数:601
  • 下载次数: 1476
  • HTML阅读次数: 1117
  • 引用次数: 0
历史
  • 收稿日期:2022-04-13
  • 最后修改日期:2022-06-01
  • 在线发布日期: 2022-08-12
文章二维码
您是第11278034位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号