离散鲸鱼算法求解拆解序列规划问题
作者:

Disassembly Sequence Planning Using Discrete Whale Optimization Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    工业产品的回收再制造有利于降低生产成本和保护环境, 而制定优秀的产品拆解序列规划提高拆解效率、降低回收成本为其关键. 针对回收设备在实际拆解中的因素, 建立一种基于离散鲸鱼算法(DWOA)的拆解序列规划模型. 该模型目标函数以位置改变为代价作为新的评价指标, 利用分层组合的方法快速生成初始群体. 离散鲸鱼算法具有优先保护约束交叉机制、启发式变异、优秀的全局和局部搜索能力. 以回收上橡皮板和空气围带进行对比实验, 结果表明在相同时间下, 离散鲸鱼算法的算法稳定性、寻优能力、收敛速度都要优于其他算法.

    Abstract:

    Recycling and remanufacturing industrial products is conducive to reducing production costs and protecting the environment. It is very important to make excellent equipment disassembly sequence planning to improve disassembly efficiency and reduce recovery costs. For the factors of equipment recycling in actual disassembly, a disassembly sequence planning model based on a discrete whale optimization algorithm (DWOA) is proposed in this study. The objective function of the model employs the position change cost as the new evaluation indicator and adopts the stratified combination method to rapidly generate the initial population. DWOA features the precedence preservative crossover mechanism, heuristic mutation, and better global and local search ability. Comparative experiments are conducted with recycled upper rubber plate and standstill seal to test the feasibility of the proposed algorithm. The experimental results show that at the same time, the algorithm stability, optimization ability, and convergence speed of DWOA are better than those of other algorithms.

    参考文献
    [1] 任亚平. 废旧产品拆解序列规划问题建模与优化研究[博士学位论文]. 武汉: 华中科技大学, 2019.
    [2] Guo XW, Zhou MC, Abusorrah A, et al. Disassembly sequence planning: A survey. IEEE/CAA Journal of Automatica Sinica, 2021, 8(7): 1308–1324. [doi: 10.1109/JAS.2020.1003515
    [3] Zhou ZD, Liu JY, Pham DT, et al. Disassembly sequence planning: Recent developments and future trends. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(5): 1450–1471. [doi: 10.1177/0954405418789975
    [4] Ong SK, Chang MML, Nee AYC. Product disassembly sequence planning: State-of-the-art, challenges, opportunities and future directions. International Journal of Production Research, 2021, 59(11): 3493–3508. [doi: 10.1080/00207543.2020.1868598
    [5] Zhang WL, Ma MX, Li HY, et al. Generating interference matrices for automatic assembly sequence planning. The International Journal of Advanced Manufacturing Technology, 2017, 90(1–4): 1187–1201. [doi: 10.1007/s00170-016-9410-x
    [6] 李佰霖. 面向水电站设备检修的虚拟仿真及自动规划方法研究与实践[博士学位论文]. 武汉: 华中科技大学, 2020.
    [7] Favi C, Marconi M, Germani M, et al. A design for disassembly tool oriented to mechatronic product de-manufacturing and recycling. Advanced Engineering Informatics, 2019, 39: 62–79. [doi: 10.1016/j.aei.2018.11.008
    [8] 杨书仪, 李京京, 文泽军, 等. 混凝土泵车分动箱拆解序列规划. 机械设计与研究, 2014, 30(5): 106–109, 124. [doi: 10.13952/j.cnki.jofmdr.2014.0151
    [9] 张雷, 彭宏伟, 卞本阳, 等. 复杂产品并行拆解建模及规划方法研究. 中国机械工程, 2014, 25(7): 937–943. [doi: 10.3969/j.issn.1004-132X.2014.07.016
    [10] 郭洪飞, 陈志彬, 任亚平, 等. 基于零件回收综合评价的废旧产品拆解序列与拆解深度集成决策研究. 机械工程学报, 2022, 58(4): 258–268
    [11] Kongar E, Gupta SM. Disassembly sequencing using genetic algorithm. The International Journal of Advanced Manufacturing Technology, 2006, 30(5): 497–506
    [12] Xu WJ, Tang Q, Liu JY, et al. Disassembly sequence planning using discrete bees algorithm for human-robot collaboration in remanufacturing. Robotics and Computer-Integrated Manufacturing, 2020, 62: 101860. [doi: 10.1016/j.rcim.2019.101860
    [13] Tseng HE, Huang YM, Chang CC, et al. Disassembly sequence planning using a flatworm algorithm. Journal of Manufacturing Systems, 2020, 57: 416–428. [doi: 10.1016/j.jmsy.2020.10.014
    [14] Zhu JF, Xu ZG, Su KY, et al. Asynchronous parallel disassembly sequence planning for multi-manipulator based on improved shuffled frog leaping algorithm. SN Applied Sciences, 2020, 2(5): 906. [doi: 10.1007/s42452-020-2680-9
    [15] Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software, 2016, 95: 51–67. [doi: 10.1016/j.advengsoft.2016.01.008
    [16] Rana N, Latiff MSA, Abdulhamid SM, et al. Whale optimization algorithm: A systematic review of contemporary applications, modifications and developments. Neural Computing and Applications, 2020, 32(20): 16245–16277. [doi: 10.1007/s00521-020-04849-z
    [17] Li BL, Li CS, Cui XL, et al. A disassembly sequence planning method with team-based genetic algorithm for equipment maintenance in hydropower station. IEEE Access, 2020, 8: 47538–47555. [doi: 10.1109/ACCESS.2020.2979247
    [18] Yeh WC. Simplified swarm optimization in disassembly sequencing problems with learning effects. Computers & Operations Research, 2012, 39(9): 2168–2177
    [19] Xia K, Gao L, Li WD, et al. Disassembly sequence planning using a simplified teaching-learning-based optimization algorithm. Advanced Engineering Informatics, 2014, 28(4): 518–527. [doi: 10.1016/j.aei.2014.07.006
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

顾嘉豪.离散鲸鱼算法求解拆解序列规划问题.计算机系统应用,2022,31(12):335-341

复制
分享
文章指标
  • 点击次数:757
  • 下载次数: 1530
  • HTML阅读次数: 1175
  • 引用次数: 0
历史
  • 收稿日期:2022-04-23
  • 最后修改日期:2022-05-22
  • 在线发布日期: 2022-08-12
文章二维码
您是第11200272位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号