改进YOLOv5s的交通标志识别算法
作者:

Improved YOLOv5s Algorithm for Traffic Sign Recognition
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    为了准确且实时地检测到交通标志指示牌, 减少交通事故的发生和推动智慧交通的发展, 针对现有的道路交通标志检测模型存在的精度不足、权重文件大、检测速度慢的问题, 设计了一种基于计算机视觉技术的改进YOLOv5s检测算法YOLOv5s-GC. 首先, 使用copy-paste进行数据增强后再送入网络进行训练, 加强对小目标的检测能力; 然后, 引入Ghost来构建网络, 削减原网络的参数和计算量, 实现轻量化模型; 最后, 将坐标注意力机制(coordinate attention)融合到骨干网络里, 增强对待测目标的表示和定位能力, 提高识别精度. 实验结果表明, YOLOv5s-GC模型相比于原YOLOv5s模型, 参数数目减少了12%, 检测速度提高了22%, 平均精度达到了94.2%, 易于部署且能满足实际自动驾驶场景中对识别交通标志的速度和准确度要求.

    Abstract:

    This study aims to detect traffic signs accurately and in real time, reduce traffic accidents, and promote intelligent transportation. An improved YOLOv5s detection algorithm, YOLOv5s-GC, based on computer vision technology is designed to solve the problems of insufficient accuracy, large weight files, and slow detection speed of existing detection models for road traffic signs. Firstly, data is enhanced by copy-paste and then sent to the network for training to improve the detection ability of small targets. Then, Ghost is introduced to build the network, reducing the parameters and calculation amount of the original network, and realizing a lightweight network. Finally, the coordinate attention mechanism is added to the backbone network to enhance the representation and positioning of the attention target and improve detection accuracy. The experimental results show that in comparison with the YOLOv5s, the number of parameters of the YOLOv5s-GC network model is reduced by 12%; the detection speed is increased by 22%; the average accuracy reaches 94.2%. The YOLOv5s-GC model is easy to deploy and can meet the speed and accuracy requirements of traffic sign recognition in actual autonomous driving scenarios.

    参考文献
    [1] 任菲菲. 基于形状模板匹配的实时目标检测与跟踪算法研究[硕士学位论文]. 武汉: 华中科技大学, 2017.
    [2] 陈兴, 贾银山. 基于支持向量机的交通标志识别方法研究. 科学技术与工程, 2011, 11(8): 1751–1754. [doi: 10.3969/j.issn.1671-1815.2011.08.022
    [3] 陈飞, 刘云鹏, 李思远. 复杂环境下的交通标志检测与识别方法综述. 计算机工程与应用, 2021, 57(16): 65–73. [doi: 10.3778/j.issn.1002-8331.2103-0380
    [4] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [5] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [doi: 10.1109/tpami.2016.2577031
    [6] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 6517–6525.
    [7] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [8] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [9] Sermanet P, LeCun Y. Traffic sign recognition with multi-scale convolutional networks. Proceedings of 2011 International Joint Conference on Neural Networks. San Jose: IEEE, 2011. 2809–2813.
    [10] 陈朋弟, 黄亮, 夏炎, 等. 基于Mask R-CNN的无人机影像路面交通标志检测与识别. 国土资源遥感, 2020, 32(4): 61–67
    [11] 江金洪, 鲍胜利, 史文旭, 等. 基于YOLO v3算法改进的交通标志识别算法. 计算机应用, 2020, 40(8): 2472–2478
    [12] 谭波, 王正家. 基于多尺度区域卷积神经网络小交通标志识别算法. 现代电子技术, 2021, 44(15): 59–64. [doi: 10.16652/j.issn.1004-373x.2021.15.012
    [13] 郭继峰, 孙文博, 庞志奇, 等. 一种改进YOLOv4的交通标志识别算法. 小型微型计算机系统, 2021: 1–7. http://kns.cnki.net/kcms/detail/21.1106.TP.20210623.1130.004.html. (2021-06-23).
    [14] Ghiasi G, Cui Y, Srinivas A, et al. Simple copy-paste is a strong data augmentation method for instance segmentation. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 2917–2927.
    [15] Han K, Wang YH, Tian Q, et al. GhostNet: More features from cheap operations. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 1577–1586.
    [16] Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design. Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13708–13717.
    [17] 张路遥, 韩华. 基于YOLOv5s的人脸是否佩戴口罩检测. 智能计算机与应用, 2021, 11(9): 196–199
    [18] 田枫, 贾昊鹏, 刘芳. 改进YOLOv5的油田作业现场安全着装小目标检测. 计算机系统应用, 2022, 31(3): 159–168. [doi: doi: 10.15888/j.cnki.csa.008359
    [19] Guo CX, Fan B, Zhang Q, et al. AugFPN: Improving multi-scale feature learning for object detection. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 12592–12601.
    [20] Liu S, Qi L, Qin HF, et al. Path aggregation network for instance segmentation. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [21] 罗小权, 潘善亮. 改进YOLOV3的火灾检测方法. 计算机工程与应用, 2018, 56(17): 187–196
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

乔欢欢,权恒友,邱文利,闫润禾.改进YOLOv5s的交通标志识别算法.计算机系统应用,2022,31(12):273-279

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-04-13
  • 最后修改日期:2022-05-22
  • 在线发布日期: 2022-07-28
文章二维码
您是第11418035位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号