摘要:在通用的目标检测算法中, 目标多变的尺度和特征融合利用一直是限制目标检测任务的难题. 针对上述问题, 首先文中提出了多路径特征融合模块, 模块采用跨尺度跨路径特征融合的方法, 强化输入输出特征之间的联系, 缓解了特征信息在传递时的稀释问题. 同时, 文中通过改进注意力模型提出了尺度感知模块, 该模块能根据目标的尺度自行地选择感受野大小, 从而使模型易于识别多尺度目标. 将尺度感知模块嵌入到多路径特征融合模块中, 使模型的特征提取和利用能力均得到提升. 经实验验证, 文中提出的算法在数据集PASCAL VOC和MS COCO上的平均检测精度分别达到了82.2%和38.0%, 相比基线FPN Faster RCNN分别提升了1.3%和0.6%, 其中对小尺度目标的检测效果提升最为显著.