摘要:作为衡量空气污染物浓度的重要指标, 对PM2.5浓度进行监控预测, 能够有效地保护大气环境, 进一步地减少空气污染带来的危害. 随着空气质量自动监测站的大范围建立, 由传统的机器学习搭建的空气质量预测模型已经不能满足当今的需求. 本文提出了一种基于多头注意力机制和高斯概率估计的高斯-注意力预测模型, 并对沈阳市某监测站点的数据进行了训练和测试. 该模型考虑了PM2.5浓度受到其他空气质量数据的影响, 将空气质量数据的分层时间戳(周、日、小时)的信息对齐作为输入, 使用多头注意力机制对于不同子空间的时间序列关联特征进行提取, 能够获得更加完善有效的特征信息, 再经过高斯似然估计得到预测结果. 通过与多种基准模型进行对比, 相较于性能较优的DeepAR, 高斯-注意力预测模型的MSE、MAE分别下降了21%、15%, 有效地提高了预测准确率, 能够较准确地预测出PM2.5浓度.