摘要:对于手势识别来说, 骨架数据是一种紧凑且对环境条件稳健的数据模态. 最近基于骨架的手势识别研究多使用深度神经网络去提取空间和时间的信息, 然而这些方法可能存在复杂的计算和大量的模型参数的问题. 为了解决这个问题, 我们提出一种轻量高效的手势识别模型. 该模型使用从骨架序列上计算出的两种空间几何特征, 以及自动学习的运动轨迹特征, 然后只使用卷积网络作为骨干网络实现手势分类. 最终我们的模型参数量最少情况下仅为0.16 M, 计算复杂度最大情况为0.03 GFLOPs. 我们在公开的两个数据集上评估了我们的方法, 与其他输入为骨架模态的方法相比, 我们的方法取得了相应数据集上最好的结果.