基于t分布的贝叶斯深度学习模型及其应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(11401556); 2020年度贵州财经大学引进人才科研启动项目(2020YJ026); 贵州省科学技术基金(黔科合基础-ZK[2022]一般 017); 贵州省教育厅创新群体项目 (黔教合KY字[2021]015); 贵州省大数据统计分析重点实验室资助项目(黔科合平台人才[2019]5103 号)


Bayesian Deep Learning Models Based on t Distribution and Their Applications
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    贝叶斯深度学习(BDL)融合了贝叶斯方法与深度学习(DL)的互补优势, 成为复杂问题中不确定性建模与推断的强大工具. 本文构建了基于t 分布和循环随机梯度汉密尔顿蒙特卡罗采样算法的BDL框架, 并基于数据不确定性和模型定不确定性给出了不确定性的度量. 为了验证模型框架的有效性和适用性, 我们分别基于人工神经网络(ANN)、卷积神经网络(CNN) 和循环神经网络(RNN)构建了相应的BDL模型, 并将模型应用于全球15个股票指数预测, 实证结果显示: 1)该框架在ANN、CNN和RNN 下均适用, 对全部指数的预测效果均很出色; 2) 在预测精度和通用性方面, 基于t分布BDL的模型比基于正态分布的BDL模型具有显著优越性; 3)在给定不确定性阈值之下的预测MAE 比初始MAE显著提升, 表明文中定义的不确定性是有效的, 对不确定性建模具有重要意义. 鉴于该BDL框架在预测精度、易于拓展和具备提供预测不确定性度量的优势, 其在金融和其他具有复杂数据特征的领域均有广阔的应用前景.

    Abstract:

    As Bayesian deep learning (BDL) combines the complementary advantages of the Bayesian method and deep learning (DL), it becomes a powerful tool for uncertainty modeling and inference of complex problems. In this study, a BDL framework based on t distribution and the cyclic stochastic gradient Hamiltonian Monte Carlo sampling algorithm is constructed, and a measure of uncertainty is given in view of data uncertainty and model uncertainty. To verify the validity and applicability of the framework, this study constructs corresponding BDL models based on the artificial neural network (ANN), convolutional neural network (CNN), and recurrent neural network (RNN) separately and applies these models to the prediction of 15 global stock indices. The empirical results reveal that 1) the framework is applicable under ANN, CNN, and RNN, and the prediction effect of all indices is excellent; 2) in terms of prediction accuracy and applicability, the BDL models based on t distribution have significant advantages over those based on normal distribution; 3) the MAE under a given uncertainty threshold is better than the original MAE, which indicates that the measure of uncertainty defined in this study is effective and is of great significance to uncertainty modeling. In view of the advantages of the BDL framework in forecasting accuracy, easy to expand and providing measurement of forecasting uncertainty, it has a broad application prospect in finance and other fields with complex data characteristics.

    参考文献
    相似文献
    引证文献
引用本文

毕秀春,杨皓峰.基于t分布的贝叶斯深度学习模型及其应用.计算机系统应用,2022,31(11):330-338

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-03-04
  • 最后修改日期:2022-04-02
  • 录用日期:
  • 在线发布日期: 2022-07-14
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号