摘要:文本相似度匹配是许多自然语言处理任务的基础, 本文提出一种基于孪生网络和字词向量结合的文本相似度匹配方法, 采用孪生网络的思想对文本整体建模, 实现两个文本的相似性判断. 首先, 在提取文本特征向量时, 使用BERT和WoBERT模型分别提取字和词级别的句向量, 将二者结合使句向量具有更丰富的文本语义信息; 其次, 针对特征信息融合过程中出现的维度过大问题, 加入PCA算法对高维向量进行降维, 去除冗余信息和噪声干扰; 最后, 通过Softmax分类器得到相似度匹配结果. 通过在LCQMC数据集上的实验表明, 本文模型的准确率和F1值分别达到了89.92%和88.52%, 可以更好地提取文本语义信息, 更适合文本相似度匹配任务.