摘要:针对骨骼CT图像对比度较低、特征不明显、现有算法对骨骼特征提取不充分的问题, 本文提出了一种基于U-Net的改进网络来实现骨骼数据的精确分割. 在网络编码阶段, 使用密集连接的空洞卷积模块加强骨骼特征的提取; 在网络解码阶段, 使用结合注意力机制的融合模块充分利用空间信息与语义信息, 改善骨骼信息丢失的问题. 改进算法在人体下肢骨骼CT数据集中Dice系数达89.44%, IoU系数达80.55%. 与U-Net模型相比, Dice系数提高了5.1%, IoU系数提高了7.63%. 实验结果表明, 提出的优化算法对下肢骨骼CT图像可以达到精确分割的效果, 对骨科疾病的治疗与术前规划提供了参考.