残差密集块的卷积神经网络图像去噪
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省科技研发项目(212102210078); 河南省重大科技专项(201300210400); 河南省重点研发与推广专项(科技攻关)(202102210380)


Image Denoising Based on Convolutional Neural Networks with Residual Dense Block
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对加性高斯白噪声的图像信噪比低, 图像细节丢失问题, 结合现有卷积神经网络算法, 提出了一种基于残差密集块的卷积神经网络图像去噪模型. 该模型通过引入多级残差网络和密集连接, 并对整体网络使用Leaky ReLU激活函数, 去除不同等级强度噪声的同时, 更好保留图像的有效信息, 有效避免特征丢失. 本文提出算法和深度卷积神经网络残差学习(DnCNN)模型对比, 本文提出的模型在Set12和BSD68测试集上峰值信噪比平均提升了约0.12 dB, 结构相似性平均提升了约0.008 6, 通过观察实验效果, 表明该模型能够充分提取图像特征, 保留图像细节, 同时降低网络计算的复杂度.

    Abstract:

    Considering the low signal-to-noise ratio (SNR) and image detail loss caused by additive white Gaussian noise (AWGN), an image denoising model based on the convolutional neural network (CNN) with residual dense blocks is proposed on the basis of the existing CNN algorithms. By introducing a multi-stage residual network and dense connections and using the Leaky ReLU activation function on the whole network, the model can better retain the effective information of images and effectively avoid feature loss while removing the noise of different levels of intensity. Compared with the residual learning model of the denoising CNN (DnCNN), the proposed model has an improved peak SNR by about 0.12 dB on the Set12 and Bsd68 test sets and improved structural similarity by about 0.008 6 on average. The test results reveal that the proposed model can fully extract image features, retain image details, and reduce the computational complexity of the network.

    参考文献
    相似文献
    引证文献
引用本文

李小艳,宋亚林,乐飞.残差密集块的卷积神经网络图像去噪.计算机系统应用,2022,31(10):166-174

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-13
  • 最后修改日期:2022-02-17
  • 录用日期:
  • 在线发布日期: 2022-07-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号