基于核主元分析与核密度估计的非线性过程故障监测与识别
作者:
基金项目:

国家自然科学基金(61174123); 广东省自然科学基金(S2013010015007)


Nonlinear Process Fault Identification and Detection Based on KPCA-KDE
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在针对将核主元分析(kernel principal components analysis, KPCA)与基于高斯分布的控制限(control limits, CLS)相结合会降低其性能的问题, 提出了一种基于核主元分析与核密度估计(kernel principal components analysis-kernel density estimation, KPCA-KDE)相结合的非线性过程故障监测与识别方法. 该方法采用核密度估计(kernel density estimation, KDE)技术来估计基于KPCA的非线性过程监控的CLS. 通过研究KPCA和KPCA-KDE所有20个故障的检出率发现, 与相应的基于高斯分布的方法进行比较, KDE具有较高的故障检出率; 此外, 基于KDE的检测延迟等于或低于其他方法. 通过改变带宽和保留的主元数量进行故障检测, KPCA记录的FAR值较高, 相反, KPCA-KDE方法仍然没有记录任何假报警. 在田纳西伊斯曼过程(Tennessee Eastman, TE)上的应用表明, KPCA-KDE比基于高斯假设的CLS的KPCA在灵敏度和检测时间上都具有更好的监控性能.

    Abstract:

    The combination of kernel principal components analysis (KPCA) and control limits (CLS) based on Gaussian distribution will undermine the performance. The fault detection and identification method for nonlinear process based on kernel principal components analysis-kernel density estimation (KPCA-KDE) is proposed. kernel density estimation (KDE) technology is adopted to estimate the CLS based on KPCA for nonlinear process monitoring. According to the detection rate of all 20 faults in KPCA and KPCA-KDE, KDE has a higher fault detection rate than the corresponding method based on Gaussian distribution. In addition, KDE-based detection delay is equal to or lower than other methods. By changing the bandwidth and the number of reserved pivots during the fault detection, KPCA records a larger FAR while the KPCA-KDE does not record any false alarms. The application on the Tennessee Eastman (TE) process shows that KPCA-KDE has better monitoring performance in sensitivity and detection time than KPCA based on Gaussian CLS.

    参考文献
    [1] Schölkopf B, Smola A, Müller KR. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998, 10(5): 1299–1319. [doi: 10.1162/089976698300017467
    [2] 吴天昊, 刘韬, 施海宁, 等. 基于核主元分析法的核电厂设备状态监测技术研究. 核动力工程, 2020, 41(5): 132–137
    [3] 吕宁, 颜鲁齐, 白光远. 分段多向核主元分析的啤酒发酵过程故障检测. 计算机科学, 2016, 43(S1): 25–27, 33
    [4] 吴洪艳, 黄道平. 基于特征向量提取的核主元分析法. 计算机科学, 2009, 36(7): 185–187, 255. [doi: 10.3969/j.issn.1002-137X.2009.07.044
    [5] 杨大勇, 杨建华, 卢伟. 基于动态阈值的核密度估计前景检测算法. 计算机应用, 2015, 35(7): 2033–2038. [doi: 10.11772/j.issn.1001-9081.2015.07.2033
    [6] 郭金玉, 张安宝, 李元. 基于故障检测的KPCA中核主元的选取方法. 计算机应用与软件, 2021, 38(9): 60–66, 85. [doi: 10.3969/j.issn.1000-386x.2021.09.010
    [7] 郑丹, 陈路, 童楚东. 基于KPCA非线性故障监测过程优化. 数据通信, 2021, (3): 23–25, 28. [doi: 10.3969/j.issn.1002-5057.2021.03.005
    [8] Wang H, Peng MJ, Yu Y, et al. Fault identification and diagnosis based on KPCA and similarity clustering for nuclear power plants. Annals of Nuclear Energy, 2021, 150: 107786. [doi: 10.1016/j.anucene.2020.107786
    [9] Choi SW, Lee IB. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chemical Engineering Science, 2004, 59(24): 5897–5908. [doi: 10.1016/j.ces.2004.07.019
    [10] Bowman AW, Azzalini A. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-plus Illustrations. Oxford: Clarendon Press, 1977.
    [11] 王萌萌, 梁泸丹, 寇俊克. 基于MATLAB的核密度估计研究. 科技视界, 2021, (4): 45–47
    [12] 王国良, 梁德群, 王新年, 等. 基于分箱核密度估计的非参数多模态背景模型. 计算机应用, 2007, 27(5): 1121–1122
    [13] Xiong L, Liang J, Qian JX. Multivariate statistical process monitoring of an industrial polypropylene catalyzer reactor with component analysis and kernel density estimation. Chinese Journal of Chemical Engineering, 2007, 15(4): 524–532
    [14] Cheng C, Chiu MS. Nonlinear process monitoring using JITL-PCA. Chemometrics and Intelligent Laboratory Systems, 2005, 76(1): 1–13. [doi: 10.1016/j.chemolab.2004.08.003
    [15] Petzold L, Li ST, Cao Y, et al. Sensitivity analysis of differential-algebraic equations and partial differential equations. Computers & Chemical Engineering, 2006, 30(10–12): 1553–1559
    [16] Deng XG, Tian XM, Chen S. Modified kernel principal component analysis based on local structure analysis and its application to nonlinear process fault diagnosis. Chemometrics and Intelligent Laboratory Systems, 2013, 127: 195–209. [doi: 10.1016/j.chemolab.2013.07.001
    [17] Martins JRRA, Sturdza P, Alonso JJ. The complex-step derivative approximation. ACM Transactions on Mathematical Software, 2003, 29(3): 245–262. [doi: 10.1145/838250.838251
    [18] Downs JJ, Vogel EF. A plant-wide industrial process control problem. Computers & Chemical Engineering, 1993, 17(3): 245–255
    [19] Chiang LH, Russell E, Braatz RD. Fault Detection and Diagnosis in Industrial Systems. London: Springer, 2001.
    [20] McAvoy TJ, Ye N. Base control for the Tennessee Eastman problem. Computers & Chemical Engineering, 1994, 18(5): 383–413
    [21] van Sprang ENM, Ramaker HJ, Westerhuis JA, et al. Critical evaluation of approaches for on-line batch process monitoring. Chemical Engineering Science, 2002, 57(18): 3979–3991. [doi: 10.1016/S0009-2509(02)00338-X
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑天标,肖应旺.基于核主元分析与核密度估计的非线性过程故障监测与识别.计算机系统应用,2022,31(10):329-334

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-01-13
  • 最后修改日期:2022-02-17
  • 在线发布日期: 2022-07-15
文章二维码
您是第11543908位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号