摘要:空气质量预测工作对于人们的生活日常出行具有非常重要的意义. 长短时记忆网络作为一种新型的深度学习循环神经网络, 对于时间序列数据表现出良好的预测能力. 但是针对神经网络模型在训练过程中一般凭借经验进行参数选择, 训练周期长, 预测精度低, 结果不可靠的问题, 本文提出了一种基于鲸鱼优化算法的双向长短时记忆网络模型, 即WOA (whale optimization algorithm)-BiLSTM (bidirectional long short-term memory)模型. 双向长短时记忆网络凭借其前向和后向的双向网络结构, 能够加强序列数据信息的记忆能力, 而WOA算法可以依据鲸鱼捕食时气泡网捕食的方法, 协助BiLSTM模型在训练过程中找到最优的网络参数. 将该模型用于陕西省AQI (air quality index)预测, 并分别和BiLSTM、LSTM模型进行对比, 发现本文提出的模型预测结果最好, MAE值为6.543 3, R2值达0.989 9. 将该模型用于空气质量预测领域具有良好的理论和实践意义.