基于深度学习的二维人体姿态估计算法综述
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

北京市自然基金和北京市教委联合项目(KZ202010015021); 北京印刷学院科研项目(Ec202002, Eb202103); 北京印刷学院博士启动基金(27170120003/021); 北京市教育委员会科研计划(KM201910015003, KM201610015001)


Overview on Two-dimensional Human Pose Estimation Methods Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    二维人体姿态估计作为人体动作识别的基础, 随着深度学习和神经网络的流行已经成为备受学者关注的研究热点. 与传统方法相比, 深度学习能够得到更深层图像特征, 对数据的表达更准确, 因此已成为研究的主流方向. 本文主要介绍了二维人体姿态估计算法, 首先根据检测人数分为单人姿态估计与多人姿态估计两类, 其次对单人姿态估计分为基于坐标回归与基于热图检测的方法; 对多人姿态估计可分为自顶向下(top-down)和自底向上(bottom-up)的方法. 最后介绍了姿态估计常用数据集以及评价指标对部分多人姿态估计算法的性能指标进行了对比, 并对人体姿态估计研究所面临的问题与发展趋势进行了阐述.

    Abstract:

    As the basis of human motion recognition, two-dimensional human pose estimation has become a research hotspot with the popularity of deep learning and neural networks. Compared with traditional methods, deep learning can achieve deeper image features and express the data more accurately, thus becoming the mainstream of research. This study mainly introduces two-dimensional human pose estimation algorithms. Firstly, according to the number of people detected, the algorithms are divided into two categories for single-person and multi-person pose estimation. Secondly, the single-person pose estimation methods are divided into two groups based on coordinate regression and heat map detection. Multi-person poses can be estimated by top-down and bottom-up methods. Finally, the study introduces commonly used data sets and evaluation indexes of human pose estimation and compares the performance indexes of some multi-person pose estimation algorithms. It also expounds on the challenges and development trends of human pose estimation.

    参考文献
    相似文献
    引证文献
引用本文

马双双,王佳,曹少中,杨树林,赵伟,张寒.基于深度学习的二维人体姿态估计算法综述.计算机系统应用,2022,31(10):36-43

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-20
  • 最后修改日期:2022-01-18
  • 录用日期:
  • 在线发布日期: 2022-06-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号