基于深度学习的医疗命名实体识别
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省普通高校“人工智能”重点领域专项 (2019KZDZX1027); 中国高等教育学会专项课题 (2020JXD01); 广东高校省级重点平台和重大科研项目 (2017KTSCX048); 广东省中医药局科研项目 (20191411)


Medical Named Entity Recognition Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    医疗命名实体识别指从海量的非结构化的医疗数据中提取关键信息, 为医学研究的发展和智慧医疗系统的普及提供了基础. 深度学习运用深层非线性的神经网络结构能够学习到复杂、抽象的特征, 可实现对数据更本质的表征. 医疗命名实体识别采用深度学习模型可明显提升效果. 首先, 本文综述了医疗命名实体识别特有的难点以及传统的识别方法; 其次, 总结了基于深度学习方法的模型并介绍了较为流行的模型改进方法, 包括针对特征向量的改进, 针对数据匮乏、 复杂命名实体识别等问题的改进; 最后, 通过综合论述对未来的研究方向进行展望.

    Abstract:

    Medical named entity recognition refers to the extraction of key information from massive unstructured medical data, which provides a foundation for the development of medical research and the popularization of smart medical systems. Deep learning uses deep nonlinear neural network structures to learn complex and abstract characteristics, which can represent data more essentially. Deep learning models can significantly improve the effect of medical named entity recognition. First, this study introduces the unique difficulties and traditional methods of medical named entity recognition. Then, it summarizes models based on deep learning and popular model improvement methods, including the improvement of feature vectors and the ways to deal with difficulties such as a lack of data and the recognition of complex named entities. Finally, the study provides an outlook on future research direction through a comprehensive discussion.

    参考文献
    相似文献
    引证文献
引用本文

贾杨春,朱定局.基于深度学习的医疗命名实体识别.计算机系统应用,2022,31(9):70-81

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-06
  • 最后修改日期:2022-01-11
  • 录用日期:
  • 在线发布日期: 2022-06-24
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号