摘要:由于运动原因会造成活体心脏MRI图像中左心室心内膜与心肌边缘轮廓模糊, 进而导致分割不准确以及分割精度较低, 针对这些问题, 本文提出一种基于光流场与语义特征融合的心脏4D Cine-MRI (magnetic resonance imaging)左心室心肌分割模型OSFNet. 该模型包含了光流场计算和语义分割网络: 将光流场计算得到的运动特征与图像语义特征进行融合, 通过网络学习达到了最优的分割效果. 模型采用编码器-解码器结构, 本文提出的多感受野平均池化模块用于提取多尺度语义特征, 减少了特征丢失; 解码器部分使用了多路上采样方法和跳跃连接, 保证了语义特征被有效还原. 本文使用ACDC公开数据集对模型进行训练与测试, 并分别与DenseNet和U-Net在左心室内膜分割、左心室内膜和心肌分割目标上进行对比. 实验结果表明, OSFNet在Dice和HD等多个指标上取得了最佳效果.