基于动态卷积的多模态脑MR图像生成
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省科技厅科技攻关项目(212102310084); 河南省高等学校重点科研项目(22A520027)


Multi-modality Brain MR Images Synthesis Based on Dynamic Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近年来, 通过自动生成方法获取多模态MR图像得到了广泛研究, 但仍难以通过一种模态直接生成其他各类模态的图像. 针对该问题, 本文提出了动态生成对抗网络. 新模型通过将生成对抗网络与动态卷积相结合, 同时加入任务标签这一条件, 实现从一种MR模态同时生成其他3种MR模态. 同时为了提高图像生成质量, 进一步提出了多尺度判别策略, 通过融合多个尺度来提升判别效果. 基于BRATS19数据集进行生成验证, 实验结果表明, 新方法不但可以同时生成多种模态的数据, 而且提高了生成图像的质量.

    Abstract:

    In recent years, obtaining multi-modality magnetic resonance (MR) images with automatic generation methods has been widely studied. However, it is still difficult to generate images of all the other modalities by one given modality. To solve this problem, this study proposes a dynamic generative adversarial network (DyGAN) model. By combining the generative adversarial network and dynamic convolution and introducing a task label, the new model can simultaneously generate other three MR modalities from one modality. In addition, a multi-scale discrimination strategy is further proposed to improve the quality of image generation by fusing multiple scales. Image generation is verified on the BRATS19 dataset. The experimental results show that the new method can not only simultaneously generate multi-modality images but also improve the quality of the generated images.

    参考文献
    相似文献
    引证文献
引用本文

孙君顶,杨鸿章,闫艺丹,毋小省,唐朝生.基于动态卷积的多模态脑MR图像生成.计算机系统应用,2022,31(8):305-313

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-28
  • 最后修改日期:2021-12-29
  • 录用日期:
  • 在线发布日期: 2022-05-30
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号