融合扩充-双重特征提取应用于小样本学习
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

山东省重大科技创新工程(2020CXGCO10102)


Fusion Expansion-dual Feature Extraction Applied to Few-shot Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    小样本图片分类的目标是根据极少数带有标注的样本去识别该类别, 其中两个关键问题是带标注的数据量过少和不可见类别(训练类别和测试类别的不一致). 针对这两个问题, 我们提出了一个新的小样本分类模型: 融合扩充-双重特征提取模型. 首先, 我们引入了一个融合扩充机制(FE), 这个机制利用可见类别样本中同一类别不同样本之间的变化规则, 对支持集的样本进行扩充, 从而增加支持集中的样本数量, 使提取的特征更具鲁棒性. 其次, 我们提出了一种双重特征提取机制(DF), 该机制首先利用基类的大量数据训练两个不同的特征提取器: 局部特征提取器和整体特征提取器, 利用两个不同的特征提取器对样本特征进行提取, 使提取的特征更加全面, 然后根据局部和整体特征对比, 突出对分类影响最大的特征, 从而提高分类准确性. 在Mini-ImageNet和Tiered-ImageNet数据集上, 我们的模型都取得了较好的效果.

    Abstract:

    The goal of few-shot image classification is to identify the category based on a very small number of labeled samples. Two of the key issues are too little labeled data and invisible categories (the training category and the test category are inconsistent). In response, we propose a new few-shot classification model: fusion expansion-dual feature extraction model. First, we introduce a fusion expansion mechanism (FE), which uses the change rules between different samples of the same category in the visible category samples to expand the support set samples, thereby increasing the number of samples in the support set and making the extracted features more robust. Secondly, we propose a dual feature extraction mechanism (DF). A large amount of data from the base class is first utilized to train two different feature extractors: a local feature extractor and a global feature extractor, which are applied to extract more comprehensive sample features. Then the local and overall features are compared to highlight the features that have the greatest impact on the classification, thereby improving the accuracy of the classification. On the Mini-ImageNet and Tiered-ImageNet datasets, our model has achieved good results.

    参考文献
    相似文献
    引证文献
引用本文

杨振宇,胡新龙,崔来平,王钰,马凯洋.融合扩充-双重特征提取应用于小样本学习.计算机系统应用,2022,31(9):217-225

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-01
  • 最后修改日期:2021-12-29
  • 录用日期:
  • 在线发布日期: 2022-06-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号