摘要:针对X光安检违禁品检出率低下的问题, 提出了一种基于改进Cascade RCNN网络的X光安检违禁品检测算法. 该算法在网络结构上引入批特征擦除(batch feature erasing, BFE)模块. BFE模块通过随机擦除相同区域来增强局部特征学习, 进而强化网络对剩余特征的学习表达. 此外, 针对检出率低下问题, 在该算法中提出加权SD loss损失函数, 该损失函数使用权重融合的方式将Smooth L1 loss与DIoU loss进行加权融合, 通过改变权重比例系数, 能够使目标检测结果更加准确, 一定程度上提高了检出率. 实验结果表明: 在公开的X光安检违禁品数据集上, 测试性能与原算法相比, 改进Cascade RCNN网络对X光安检违禁品检出率增长了3.11%, 改进算法的识别精度有一定的提高.