基于高斯混合隐马尔科夫模型的自由换道识别
作者:
基金项目:

国家自然科学基金 (52172325)


Recognition of Free Lane Change Based on Gaussian Mixture Hidden Markov Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    驾驶辅助系统被认为是解决交通安全问题的有效手段, 开发驾驶辅助系统的基础是对车辆的行为进行准确的识别, 以应用于车辆安全预警, 路径规划, 智能导航等方面. 目前存在的基于支持向量机模型, 隐马尔科夫模型, 卷积神经网络等行为识别方法还存在计算量与精度平衡的问题. 本文结合了隐马尔科夫模型与高斯混合模型, 提出了高斯混合隐马尔科夫模型, 利用美国联邦公路管理局NGSIM数据集对此方法进行了实验验证, 结果表明该方法对自由换道行为识别具有较高的精度. 本文还对高斯混合隐马尔科夫模型的实验参数进行了优化, 以期达到最好的识别效果, 为未来智能驾驶的车辆行为识别提供了参考.

    Abstract:

    The driver assistance system is considered the first choice for solving traffic safety problems. The basis of developing a driver assistance system is to accurately recognize the vehicle behavior for applications in aspects such as vehicle safety warning, path planning, and intelligent navigation. The existing behavior recognition methods based on the support vector machine model, hidden Markov model, and convolutional neural network still face the imbalance problem between calculation amount and accuracy. This study proposes a Gaussian mixture hidden Markov model, which is a combination of the hidden Markov model and the Gaussian mixture model. The model is experimentally verified on the NGSIM data set from the Federal Highway Administration of the USA, and the results reveal that the model has higher accuracy in the recognition of free lane-changing behavior. Additionally, this study optimizes the parameters of the proposed model to achieve the best recognition effect and provide a reference for the vehicle behavior recognition of intelligent driving in the future.

    参考文献
    [1] Yang ZK, Zhang WP, Feng J. Predicting multiple types of traffic accident severity with explanations: A multi-task deep learning framework. Safety Science, 2022, 146: 105522. [doi: 10.1016/j.ssci.2021.105522
    [2] World Health Organization. Global status report on road safety 2018: Summary. WHO/NMH/NVI/18.20, Geneva: World Health Organization, 2018.
    [3] 国家统计局. 中国统计年鉴 2020. 北京: 中国统计出版社, 2020.
    [4] Schubert R, Schulze K, Wanielik G. Situation assessment for automatic lane-change maneuvers. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(3): 607–616. [doi: 10.1109/TITS.2010.2049353
    [5] Li KQ, Wang X, Xu YC, et al. Lane changing intention recognition based on speech recognition models. Transportation Research Part C: Emerging Technologies, 2016, 69: 497–514. [doi: 10.1016/j.trc.2015.11.007
    [6] Xia YJ, Qu ZW, Sun Z, et al. A human-like model to understand surrounding vehicles’ lane changing intentions for autonomous driving. IEEE Transactions on Vehicular Technology, 2021, 70(5): 4178–4189. [doi: 10.1109/TVT.2021.3073407
    [7] Husen MN, Lee S. Continuous car driving intention recognition with syntactic pattern approach. Proceedings of 2016 International Conference on Information and Communication Technology. Kuala Lumpur: IEEE, 2016. 71–76.
    [8] Yu KP, Lin L, Alazab M, et al. Deep learning-based traffic safety solution for a mixture of autonomous and manual vehicles in a 5G-enabled intelligent transportation system. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(7): 4337–4347. [doi: 10.1109/TITS.2020.3042504
    [9] Lee D, Kwon YP, McMains S, et al. Convolution neural network-based lane change intention prediction of surrounding vehicles for ACC. Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Yokohama: IEEE, 2017. 1–6.
    [10] Li DC, Wu YJ, Bai B, et al. Behavior and interaction-aware motion planning for autonomous driving vehicles based on hierarchical intention and motion prediction. Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes: IEEE, 2020. 1–8.
    [11] 李航. 统计学习方法. 北京: 清华大学出版社, 2012.
    [12] Colyar J, Halkias J. US highway 80 dataset. Technical Report, Washington: Federal Highway Administration, 2007.
    [13] Thiemann C, Treiber M, Kesting A. Estimating acceleration and lane-changing dynamics from next generation simulation trajectory data. Transportation Research Record: Journal of the Transportation Research Board, 2008, 2088(1): 90–101. [doi: 10.3141/2088-10
    [14] 张良, 陈诗慧, 张伟. 驾驶员换道执行持续时间研究. 工业工程与管理, 2014, 19(4): 109–114. [doi: 10.3969/j.issn.1007-5429.2014.04.016
    [15] Jin H, Duan CG, Liu Y, et al. Gauss mixture hidden Markov model to characterise and model discretionary lane-change behaviours for autonomous vehicles. IET Intelligent Transport Systems, 2020, 14(5): 401–411. [doi: 10.1049/iet-its.2019.0446
    [16] Deng Q, Wang J, Hillebrand K, et al. Prediction performance of lane changing behaviors: A study of combining environmental and eye-tracking data in a driving simulator. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(8): 3561–3570. [doi: 10.1109/TITS.2019.2937287
    [17] Liu SW, Zheng K, Zhao L, et al. A driving intention prediction method based on hidden Markov model for autonomous driving. Computer Communications, 2020, 157: 143–149. [doi: 10.1016/j.comcom.2020.04.021
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨志强,朱家伟,穆蕾,安毅生.基于高斯混合隐马尔科夫模型的自由换道识别.计算机系统应用,2022,31(8):388-394

复制
分享
文章指标
  • 点击次数:677
  • 下载次数: 1648
  • HTML阅读次数: 1664
  • 引用次数: 0
历史
  • 收稿日期:2021-10-31
  • 最后修改日期:2021-11-29
  • 在线发布日期: 2022-05-30
文章二维码
您是第11548252位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号