摘要:电力企业为实现数字资产管理, 提高行业运行效率, 促进电力信息化的融合, 需要实施有效的数据组织管理方法. 针对电力行业中的数据, 提出了基于字级别特征的高效文本类型识别模型. 在该模型中, 将字符通过BERT预训练模型生成电力客服文本动态的高效字向量, 字向量序列输入利用融合注意力机制的双向长短期记忆网络(BiLSTM), 通过注意力机制有效捕捉文本中帮助实现类型识别的潜在特征, 最终利用Softmax层实现对电力文本的类型识别任务. 本文提出的模型在电力客服文本数据集上达到了98.81%的准确率, 优于CNN, BiLSTM等传统神经网络识别方法, 增强了BERT模型的应用, 并有效解决了电力文本类型识别任务中语义的长距离依赖问题.