摘要:为进一步提高花卉分类的准确率, 在对现有的VGG16网络模型进行研究的基础上, 提出一种基于视觉注意力机制的网络模型. 将SE视觉注意力模块嵌入到VGG16网络模型中, 实现了对花卉显著性区域特征的提取; 为有效防止梯度爆炸及梯度消失, 加快网络的训练和收敛的速度, 在各卷积层后加入BN层; 采用多损失函数融合的方式对新模型进行训练. 新模型能有效提取花卉的花蕊、花瓣等显著性区域, 放大了花卉的类间距离, 缩小了类内距离, 加快了网络的收敛, 进一步提高了花卉分类的准确率. 实验结果表明, 新模型在Oxford-102数据集上的分类准确率比未引入注意力前有较大提高, 与参考文献相比, 分类准确率也有较大的提高.