基于PSO算法的电力一线员工绩效评价方法
作者:
基金项目:

国防科技重点实验室基金(6142103200101)


Performance Evaluation Method for Front-line Staff in Electric Power Company Based on PSO Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    本文针对电力一线员工绩效考核普遍存在的考核人员评测难、“过于量化”的问题, 提出了一套基于工单的绩效评价模型. 通过对同类工作项基于多维评价属性简单定性进行纵向计数量化, 对不同工作项基于班组长的主观评估权重进行横向聚类, 充分挖掘考核人员主观评估中隐含的价值信息. 同时, 本文提出基于平均度数的动态随机拓扑PSO算法对模型进行求解, 对算法中粒子编码方式、约束条件处理、策略具体实现等展开了深入的探究. 最后, 本文选取5个同类型班组采用该模型进行绩效测算, 验证了本文模型和算法的有效性, 为电力一线员工绩效考核提供了一个新的方法.

    Abstract:

    Performance evaluation of the front-line staff in an electric power company often encounters problems such as hard assessment for the raters and undue quantification. In response, this study proposes a model of performance evaluation based on work tickets. Vertical quantification of counting is performed for the same work item through simple characterization of multi-dimensional evaluation attributes, and horizontal clustering is conducted for different work items according to the weights of the subjective assessment by team leaders. In this way, the model tries to explore the hidden information in the raters’ subjective assessment. Meanwhile, a dynamic random population topology-particle swarm optimization (RPT-PSO) algorithm based on the average degree is proposed to solve the model. In-depth research is conducted on the encoding modes of particles, the way that constraints are handled, and the specific implementation of strategies in the algorithm. Finally, five teams of the same type are selected for performance measurement by the proposed model. The computational results demonstrate that the proposed model and the RPT-PSO algorithm are effective, providing a new solution to the performance evaluation of the front-line staff in an electric power company.

    参考文献
    [1] 滕学军. 基于KPI的电力企业员工绩效管理体系研究. 电力设备管理, 2019, (10): 115–117
    [2] 彭佳惠, 李佩瑜. 基于EVA的电力企业绩效评价研究. 财经界, 2020, (27): 46–47
    [3] 查杰, 娜比拉·海萨尔. 基于平衡计分卡的供电公司绩效考核体系研究. 营销界, 2020, (48): 121–122
    [4] 蒋丽, 王伟玉. 基于战略导向的电力企业项目制绩效考核体系设计——以HL公司为例. 现代营销, 2021, (3): 190–191
    [5] 杨子, 李歆. 基于OKR方法的绩效考核模式优化研究——以宁夏电科院为例. 企业改革与管理, 2021, (12): 62–63
    [6] 张峰. 一线员工绩效管理在电力企业的探索. 人力资源管理, 2015, (12): 128–129. [doi: 10.3969/j.issn.1673-8209.2015.12.107
    [7] 冯志雨, 游晓明, 刘升. 分层递进的改进聚类蚁群算法解决TSP问题. 计算机科学与探索, 2019, 13(8): 1280–1294. [doi: 10.3778/j.issn.1673-9418.1901022
    [8] 李伟. 基于划分的蚁群聚类算法研究. 信息与电脑, 2019, (2): 45–47
    [9] 武书舟, 闫丽娜, 张秋艳, 等. 基于改进蚁群算法的聚类分析方法研究. 计算机与数字工程, 2018, 46(9): 1721–1725, 1849. [doi: 10.3969/j.issn.1672-9722.2018.09.005
    [10] 冯劲, 姚远. 融合相似度计算与改进遗传算法的聚类分析. 计算机仿真, 2020, 37(9): 226–230. [doi: 10.3969/j.issn.1006-9348.2020.09.047
    [11] 孙雨萌, 柏丽娜, 张旭秀. 核模糊聚类划分子种群的双种群遗传算法. 大连工业大学学报, 2021, 40(1): 67–73
    [12] Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of 1995 International Conference on Neural Networks. Perth: IEEE, 1995. 1942–1948.
    [13] Shi Y, Eberhart RC. Empirical study of particle swarm optimization. Proceedings of 1999 IEEE Congress on Evolutionary Computation (CEC). Washington: IEEE, 1999. 1945–1950.
    [14] Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization. Proceedings of 1999 IEEE Congress on Evolutionary Computation (CEC). Washington: IEEE, 1999. 1951–1957.
    [15] Liang JJ, Qin AK, Suganthan PN, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295. [doi: 10.1109/TEVC.2005.857610
    [16] 朱国晖, 刘茹文, 杨瑛. 多种群粒子群的SDN控制器故障恢复算法. 计算机工程与应用. http://kns.cnki.net/kcms/detail/11.2127.TP.20210326.1634.004.html. [2021-09-15].
    [17] Li GQ, Wang WL, Zhang WW, et al. Grid search based multi-population particle swarm optimization algorithm for multimodal multi-objective optimization. Swarm and Evolutionary Computation, 2021, 62: 100843. [doi: 10.1016/j.swevo.2021.100843
    [18] Tsujimoto T, Shindo T, Kimura T, et al. A relationship between network topology and search performance of PSO. Proceedings of 2012 IEEE Congress on Evolutionary Computation (CEC). Brisbane: IEEE, 2012. 1–6.
    [19] 倪庆剑, 邓建明, 邢汉承. 基于异构多种群策略的动态概率粒子群优化算法. 模式识别与人工智能, 2014, 27(2): 146–152. [doi: 10.3969/j.issn.1003-6059.2014.02.008
    [20] Lu JN, Chen YH. Particle swarm optimization (PSO) based topology optimization of part design with fuzzy parameter tuning. Computer-Aided Design and Applications, 2014, 11(1): 62–68. [doi: 10.1080/16864360.2013.834139
    相似文献
    引证文献
引用本文

尹徐珊,吴鹏,赵亚.基于PSO算法的电力一线员工绩效评价方法.计算机系统应用,2022,31(7):253-258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-07
  • 最后修改日期:2021-11-08
  • 在线发布日期: 2022-05-31
文章二维码
您是第11349178位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号