基于PSO算法的电力一线员工绩效评价方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国防科技重点实验室基金(6142103200101)


Performance Evaluation Method for Front-line Staff in Electric Power Company Based on PSO Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对电力一线员工绩效考核普遍存在的考核人员评测难、“过于量化”的问题, 提出了一套基于工单的绩效评价模型. 通过对同类工作项基于多维评价属性简单定性进行纵向计数量化, 对不同工作项基于班组长的主观评估权重进行横向聚类, 充分挖掘考核人员主观评估中隐含的价值信息. 同时, 本文提出基于平均度数的动态随机拓扑PSO算法对模型进行求解, 对算法中粒子编码方式、约束条件处理、策略具体实现等展开了深入的探究. 最后, 本文选取5个同类型班组采用该模型进行绩效测算, 验证了本文模型和算法的有效性, 为电力一线员工绩效考核提供了一个新的方法.

    Abstract:

    Performance evaluation of the front-line staff in an electric power company often encounters problems such as hard assessment for the raters and undue quantification. In response, this study proposes a model of performance evaluation based on work tickets. Vertical quantification of counting is performed for the same work item through simple characterization of multi-dimensional evaluation attributes, and horizontal clustering is conducted for different work items according to the weights of the subjective assessment by team leaders. In this way, the model tries to explore the hidden information in the raters’ subjective assessment. Meanwhile, a dynamic random population topology-particle swarm optimization (RPT-PSO) algorithm based on the average degree is proposed to solve the model. In-depth research is conducted on the encoding modes of particles, the way that constraints are handled, and the specific implementation of strategies in the algorithm. Finally, five teams of the same type are selected for performance measurement by the proposed model. The computational results demonstrate that the proposed model and the RPT-PSO algorithm are effective, providing a new solution to the performance evaluation of the front-line staff in an electric power company.

    参考文献
    相似文献
    引证文献
引用本文

尹徐珊,吴鹏,赵亚.基于PSO算法的电力一线员工绩效评价方法.计算机系统应用,2022,31(7):253-258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-07
  • 最后修改日期:2021-11-08
  • 录用日期:
  • 在线发布日期: 2022-05-31
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号