摘要:目前卷积神经网络已经在SAR目标识别领域得到了广泛应用, 然而, 由于SAR图像的目标样本数量过少, 以及图像相干斑噪声的存在, 使得网络不能充分的学习样本深层特征, 对网络的识别性能会造成一定的影响. 针对上述问题, 提出一种基于数据融合的目标识别方法, 算法首先对原始图像分别进行噪声抑制和边缘信息提取处理, 然后将处理后的两类特征信息进行数据融合, 将单通道灰度图像融合扩充至双通道图像来作为训练样本, 同时构建了一个高低层特征融合的卷积神经网络模型, 使用注意力机制来加强了对有用特征的学习, 实验结果显示, 该方法在MSTAR数据集上, 表现了对不同目标型号的优秀识别效果.