摘要:网约车是一种广泛应用的共享移动应用, 其核心问题是将出租车请求分配给具有不同目标的司机, 尽管对网约车的任务分配进行了广泛的研究, 但在很大程度上忽视了司机之间收入的公平性, 由于优化视角的短视和分配技术的耗时, 先行者对网约车公平任务分配的研究在公平性、效用性方面还存在不足. 在本文中, 提出了公平分配学习(LAF)方法, 它既优化了效用又优化了公平性的高效任务分配方案, 采用强化学习以整体的方式进行分配, 并提出一套加速技术, 以实现大规模数据的快速公平分配. 实验结果表明, 公平分配学习方法在公平性、效用性和效率方面分别比现有水平高出86.7%、29.1%和797%.