基于组合模型的燃气轮机NOx排放影响因素研究
作者:
基金项目:

上海市软科学重点研究项目(19692104000)


Research on Influencing Factors of NOx Emission from Gas Turbine Based on Combined Model
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了减少电厂污染物的排放, 如何准确估计燃气轮机氮氧化物(NOx)排放值并识别其关键影响因素, 对有效采取优化设计是至关重要的. 由于燃气轮机的运作过程存在变工况等情况, 单一模型的准确度与泛化性能难以达到工业应用的要求. 将偏最小二乘法(PLS)和互信息(MI)组合建模保证了NOx特征变量选取的有效性与精确性. 利用PLS确定影响燃气轮机NOx的特征变量数目, 避免了选择变量的主观因素并降低维数. 再用互信息(MI)选择出最优的特征变量, 通过不同的预测模型进行仿真分析, 并把单一和组合特征选择进行对比. 结果表明, 对燃气轮机NOx排放影响因素的研究中, PLS-MI组合模型选取的特征变量更具代表性, 并能够保证预测模型的泛化精度, 降低模型复杂度, 为电厂优化控制提供了理论依据, 具有一定的应用前景.

    Abstract:

    For the reduction of pollutant emissions from power plants, the ways to accurately estimate the emission value of nitrogen oxide (NOx) from gas turbines and identify its key influencing factors are crucial for effective optimization design. The accuracy and generalization performance of a single model can hardly meet the requirements of industrial applications because of variable operating conditions in the gas turbine operation process. The combined modeling of the partial least square (PLS) method and mutual information (MI) ensures the effectiveness and accuracy of the feature variable selection of NOx. Specifically, PLS is employed to determine the number of feature variables affecting the NOx of gas turbines, which can avoid subjective factors of variable selection and reduce dimensions. Then, mutual information (MI) is applied to select optimal feature variables. Different prediction models are used for simulation analysis, and single and combined feature selection is compared. The results show that in this study, the combined model PLS-MI can select more representative feature variables and can ensure the generalization accuracy of the prediction model, reducing the model complexity and providing a theoretical basis for optimal control of power plants with certain application prospects.

    参考文献
    [1] 唐振浩, 柴向颖, 曹生现, 等. 考虑时延特征的燃煤锅炉NO x排放深度学习建模. 中国电机工程学报, 2020, 40(20): 6633–6643
    [2] 董泽, 闫来清. SCR脱硝系统NO x排放浓度建模与仿真. 系统仿真学报, 2020, 32(2): 172–181
    [3] 吕游, 刘吉臻, 杨婷婷, 等. 基于PLS特征提取和LS-SVM结合的NO x排放特性建模. 仪器仪表学报, 2013, 34(11): 2418–2424
    [4] Li QW, Zhou KY, Yao GH. Combustion optimization model for NO x reduction with an improved particle swarm optimization. Journal of Shanghai Jiaotong University (Science), 2016, 21(5): 569–575. [doi: 10.1007/s12204-016-1764-6
    [5] 赵刚, 朱华昕, 李苏辉, 等. 基于数据和神经网络的燃气轮机NO x排放预测与优化. 动力工程学报, 2021, 41(1): 22–27
    [6] 伦智梅, 张振京, 宋业栋, 等. 基于回归神经网络的柴油机NO x排放预测及影响分析. 山东理工大学学报(自然科学版), 2021, 35(3): 81–86
    [7] 朱钰森, 金晓明, 张泉灵. 基于聚类与加权连接的锅炉NO x排放量多模型建模. 控制工程, 2019, 26(4): 688–693
    [8] 于静, 金秀章, 刘岳. 基于结构改进RBF神经网络的NOx预测模型比较. 控制工程. https://doi.org/10.14107/j.cnki.kzgc.20210150. (2021-06-05)[2021-07-05].
    [9] 余印振, 韩哲哲, 许传龙. 基于深度卷积神经网络和支持向量机的NOx浓度预测. 中国电机工程学报. https://doi.org/10.13334/j.0258-8013.pcsee.210077. (2021-04-01)[2021-06-23].
    [10] 许壮, 康英伟. 基于随机森林的火电机组SCR脱硝反应器建模. 动力工程学报, 2020, 40(6): 486–491, 501
    [11] Yang WJ, Ren JN, Zhang HW, et al. Single-atom iron as a promising low-temperature catalyst for selective catalytic reduction of NO x with NH3: A theoretical prediction. Fuel, 2021, 302: 121041. [doi: 10.1016/j.fuel.2021.121041
    [12] Yan LQ, Dong Z, Jia H, et al. Dynamic inferential NO x emission prediction model with delay estimation for SCR de-NO x process in coal-fired power plants. Royal Society Open Science, 2020, 7(2): 191647. [doi: 10.1098/rsos.191647
    [13] Lv Y, Yang TT, Liu JZ. An adaptive least squares support vector machine model with a novel update for NO x emission prediction. Chemometrics & Intelligent Laboratory Systems, 2015, 145: 103–113
    [14] Dong Z, Ma N, Li CQ. NO x emission model for coal-fired boilers using partial least squares and extreme learning machine. Journal of Southeast University (English Edition), 2019, 35(2): 179–184
    [15] Li Z, Lee YS, Chen JH, et al. Developing variable moving window PLS models: Using case of NO x emission prediction of coal-fired power plants. Fuel, 2021, 296: 120441. [doi: 10.1016/j.fuel.2021.120441
    [16] 吴雨, 刘媛华. 基于最近最远邻和互信息的特征选择方法. 计算机应用研究, 2017, 34(12): 3713–3716. [doi: 10.3969/j.issn.1001-3695.2017.12.044
    [17] 杨志淳, 靖晓平, 乐健, 等. 基于MI-PSO-BP算法的配电设备状态实时评估方法. 电力自动化设备, 2019, 39(12): 108–113
    [18] Zhang C, Peng T, Zhou JZ, et al. An improved autoencoder and partial least squares regression-based extreme learning machine model for pump turbine characteristics. Applied Sciences, 2019, 9(19): 3987. [doi: 10.3390/app9193987
    [19] Gao LY, Wu WG. Relevance assignation feature selection method based on mutual information for machine learning. Knowledge-Based Systems, 2020, 209: 106439. [doi: 10.1016/j.knosys.2020.106439
    [20] 李郅琴, 杜建强, 聂斌, 等. 特征选择方法综述. 计算机工程与应用, 2019, 55(24): 10–19. [doi: 10.3778/j.issn.1002-8331.1909-0066
    [21] Simsekler MCE, Alhashmi NH, Azar E, et al. Exploring drivers of patient satisfaction using a random forest algorithm. BMC Medical Informatics and Decision Making, 2021, 21(1): 157. [doi: 10.1186/s12911-021-01519-5
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石翠翠,刘媛华.基于组合模型的燃气轮机NOx排放影响因素研究.计算机系统应用,2022,31(6):354-360

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-09-08
  • 最后修改日期:2021-10-14
  • 在线发布日期: 2022-05-26
文章二维码
您是第11326470位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号