摘要:由于采用的监控图像尺寸较小、分辨率低等原因, 行人属性识别一直是一个极具挑战性的任务, 而低分辨率的图像往往又导致数据集存在识别行人主体区域不突出、背景噪音干扰严重等问题. 之前的方法大多将未作处理的原始图像作为输入, 使得属性识别效果一直不够理想, 并且, 属性识别的主流数据集通常存在正负样本不平衡的问题, 例如, 许多行人的服装属性分布有着季节性或习俗性的偏差. 因此, 本文提出一个新的深度学习网络——图像增强与样本平衡优化模型IEBO (image enhancement and sample balance optimization). 该模型通过色彩增强与提取行人主体区域的噪音抑制方法, 在突出行人核心特征的同时消除无用背景信息, 防止其对属性识别造成干扰. 另外模型通过权重调节针对样本不平衡的属性进行优化, 提高不平衡属性的识别能力. 实验最终表明, 新的行人属性识别模型在Market-1501-attribute数据集中取得了较好的性能.