基于Xception改进的卷积神经网络服装分类算法
作者:
基金项目:

陕西省科技成果转移与推广计划(2019CGXNG-018).


Improved Clothing Classification Algorithm Based on Xception in Convolutional Neural Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对服装图像分类模型的参数量过大, 时间复杂度过高和服装分类准确度不高等问题. 提出了一种利用网络剪枝方法和网络稀疏约束, 减少卷积神经网络Xception中从卷积层到全连接层的冗余参数, 增加网络的稀疏性和随机性, 减轻过拟合现象, 在保证不影响精度的前提下尽可能降低模型的时间复杂度和计算复杂度. 此外在卷积层引入了注意力机制SE-Net模块, 提升了服装图像分类的准确率. 在DeepFashion数据集上的实验结果表明, 使用网络剪枝方法缩减的网络模型在空间复杂度上和时间复杂度上均有所降低, 服装图像分类准确率和运行效率与VGG-16, ResNet-50和Xception模型相比均有所提升, 使得模型对设备的要求更低, 深度卷积神经网络在移动端、嵌入式设备中使用成为可能, 在实际服装领域的电商平台的应用中有比较高的使用价值.

    Abstract:

    The clothing image classification model has many parameters, high time complexity, and low accuracy of clothing classification. In response, a network pruning method and network sparsity constraints were proposed to reduce the redundant parameters from the convolutional layer to the full connection layer in the Xception of the convolutional neural network (CNN), increase the sparsity and randomness of the network, reduce the over-fitting phenomenon, and lower the time complexity and computational complexity of the model as much as possible without affecting the accuracy. In addition, the attention mechanism SE-Net module is introduced into the convolution layer to improve the accuracy of clothing image classification. The experimental results on the DeepFashion dataset show that the network model reduced by the network pruning method has brought down both the spatial complexity and the time complexity. Compared with VGG-16, ResNet-50, and Xception models, the proposed model, with higher clothing image classification accuracy and operation efficiency, lowers the requirements on equipment and paves the way for the application of the deep CNN on mobile terminals and embedded devices. It has a high value in the application of e-commerce platforms in real-world clothing.

    参考文献
    [1] 张振焕, 周彩兰, 梁媛. 基于残差的优化卷积神经网络服装分类算法. 计算机工程与科学, 2018, 40(2): 354–360. [doi: 10.3969/j.issn.1007-130X.2018.02.023
    [2] Willimon B, Walker I, Birchfield S. A new approach to clothing classification using mid-level layers. 2013 IEEE International Conference on Robotics and Automation. Karlsruhe: IEEE, 2013. 4271–4278.
    [3] Huo P, Wang YH, Liu QJ. A part-based and feature fusion method for clothing classification. Proceedings of the 17th Pacific Rim Conference on Multimedia. Xi’an: Springer, 2016. 231–241.
    [4] Wang WG, Wang WG, Xu YL, et al. Attentive fashion grammar network for fashion landmark detection and clothing category classification. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 4271–4280.
    [5] 王雅静, 宋丹. 基于BP神经网络的女性服装款式分类技术研究. 轻工科技, 2020, 36(4): 107–109
    [6] 刘童童. 基于卷积神经网络的服装图像精细分类[硕士学位论文]. 济南: 山东师范大学, 2019.
    [7] 高妍, 王宝珠, 郭志涛, 等. 改进HSR-FCN的服装图像识别分类算法研究. 计算机工程与应用, 2019, 55(16): 144–149. [doi: 10.3778/j.issn.1002-8331.1804-0274
    [8] 杨天祺,黄双喜. 改进卷积神经网络在分类与推荐中的实例应用. 计算机应用研究, 2018, 35(4): 974–977, 1045
    [9] 严安, 王娆芬. 基于CNN改进模型的服装分类方法. 自动化技术与应用, 2019, 38(11): 114–119. [doi: 10.3969/j.issn.1003-7241.2019.11.026
    [10] 陈巧红, 陈翊, 李文书, 等. 多尺度SE-Xception服装图像分类. 浙江大学学报(工学版), 2020, 54(9): 1727–1735
    [11] He YH, Zhang XY, Sun J. Channel pruning for accelerating very deep neural networks. Proceedings of 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017. 1398–1406.
    [12] Hu J, Shen L, Sun G. Squeeze-and-excitation networks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 7132–7141.
    [13] Madulid JPA, Mayol PE. Clothing classification using the convolutional neural network inception model. Proceedings of the 2019 2nd International Conference on Information Science and Systems. Tokyo: ACM, 2019. 3–7.
    [14] LeCun Y, Bottou L, Bengio Y. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998, 86(11): 2278–2324
    [15] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012. 1097–1105.
    [16] Zeiler MD, Fergus R. Stochastic pooling for regularization of deep convolutional neural networks. Proceedings of the 1st International Conference on Learning Representations. Scottsdale: ICLR, 2013.
    [17] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv: 1409.1556, 2015.
    [18] Szegedy C, Liu W, Jia YQ, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE, 2015. 1–9.
    [19] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 770–778.
    [20] Chollet F. Xception: Deep learning with depthwise separable convolutions. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 1800–1807.
    [21] Vasilache N, Johnson J, Mathieu M, et al. Fast convolutional nets with fbfft: A GPU performance evaluation. arXiv: 1412.7580, 2014.
    [22] Courbariaux M, Hubara I, Soudry D, et al. Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or −1. arXiv: 1602.02830, 2016.
    [23] Jaderberg M, Vedaldi A, Zisserman A. Speeding up convolutional neural networks with low rank expansions. arXiv:1405.3866, 2014.
    [24] Liu ZW, Luo P, Qiu S, et al. DeepFashion: Powering robust clothes recognition and retrieval with rich annotations. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 1096–1104.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

任永亮,宋田,毋涛.基于Xception改进的卷积神经网络服装分类算法.计算机系统应用,2022,31(6):381-387

复制
分享
文章指标
  • 点击次数:644
  • 下载次数: 1421
  • HTML阅读次数: 1560
  • 引用次数: 0
历史
  • 收稿日期:2021-08-30
  • 最后修改日期:2021-09-26
  • 在线发布日期: 2022-05-26
文章二维码
您是第11348911位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号