RF-BiLSTM神经网络在海浪预测中的应用
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61806107); 青岛市创新创业领军人才(15-07-03-0030); 农业部水产养殖数字建设试点项目(2017-A2131-130209-K0104-004)


Application of RF-BiLSTM Neural Network in Ocean Wave Forecast
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    由于风浪数据的随机性, 复杂性, 影响因素多, 多为时间序列的特点, 造成了传统预测模型预测难度大, 精确率低, 构建了基于随机森林的注意力机制与双向长短期记忆神经网络相结合的海浪预测模型. 该模型对输入进行优化, 可以使用过去和未来的数据信息进行预测, 提高了海浪波高的预测精度. 该模型利用随机森林对输入变量筛选优化, 降低网络复杂度, 然后将注意力机制与双向长短期记忆神经网络相结合建立预测模型, 并利用实际数据进行验证. 结果显示, 和BP, LSTM, BiLSTM模型比较, RF-BiLSTM模型的预测精度更高, 拟合程度更好, 在海浪数值的预测预报中有重要意义.

    Abstract:

    Due to the randomness, complexity, many influencing factors, and dominant time series of wind and wave data, traditional prediction models have great prediction difficulty and low prediction accuracy. In response, this study proposes an ocean wave prediction model combining the attention mechanism of the random forest with the bidirectional long short-term memory (BiLSTM) neural network. The model optimizes the inputs and can predict ocean waves with past and future data to improve the prediction accuracy on the wave height. It uses the random forest to filter and optimize the input variables and thereby reduce the network complexity. Then, the attention mechanism is combined with the BiLSTM neural network to build a prediction model, which is subsequently verified on actual data. The results show that compared with the BP, LSTM, and BiLSTM models, the RF-BiLSTM model has higher prediction accuracy and fitting degree and thereby has good application value in the prediction of ocean wave values.

    参考文献
    相似文献
    引证文献
引用本文

李海涛,孙亚男,付建浩. RF-BiLSTM神经网络在海浪预测中的应用.计算机系统应用,2022,31(6):331-338

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-24
  • 最后修改日期:2021-09-26
  • 录用日期:
  • 在线发布日期: 2022-05-26
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号