摘要:现如今智慧社区正在快速发展, 各种公共设施及建筑的建设使得社区内环境复杂, 影响着居民中弱势群体的安全. 故实时的居民定位便格外重要. 智慧定位作为精准化智慧服务之一, 主要通过RFID技术实现社区内老幼等人群的轨迹跟踪, 以进行安全保障. 除此之外还可分析居民聚集场所趋势, 为社区建设公共设施提出建议. 本文针对RFID阅读器传播数据时被各种噪声影响导致的定位精度差、定位结果偏差等传统问题, 引用了Kalman滤波消除信号传递过程中的过程噪声和观测噪声, 在该算法中插入改进的密度聚类算法以消除环境噪声影响, 设计了基于改进密度聚类算法的Kalman滤波轨迹定位方法(Kalman filter for improved density peak clustering, K-IDPC). 经实验验证, 相对于Kalman滤波, K-IDPC的定位精度在0.565 m左右, 准确度大幅提高.