基于LSTM的机场跑道视程预测
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Prediction of Runway Visual Range Based on LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    跑道视程反映了飞行员的视程大小, 是保障飞机起飞和着陆飞行安全的重要气象要素之一, 提升跑道视程的预测准确率将有效提升飞机在低能见度和复杂天气条件下的起降能力和航空管制能力. 跑道视程除了受自身观测仪器不足限制, 雾、烟、沙尘、强降水等其他天气对其影响也十分显著. 本文利用2012–2018年咸阳机场民航自动气象观测系统观测的风速、湿度、温度和跑道能见度等气象要素时间序列数据, 首先分析跑道视程与其他气象要素之间的长期相关关系, 并基于相关分析结果采用人工智能领域最常用的长短时记忆网络, 构建了一种机场跑道视程预测模型, 模型实验结果表明该模型在0–2小时内跑道视程预测平均拟合度能够达到72%.

    Abstract:

    Runway visual range (RVR) reflects the pilot’s visual range, which is one of the important meteorological elements to ensure aircraft flight safety when the aircrafts take off and land. Improving the prediction accuracy of RVR will effectively improve the aircraft’s take-off and landing ability and aviation control ability under low visibility and complex weather conditions. The RVR is mainly affected by fog, smoke, dust, heavy precipitation and other weather, as well as the lack of instruments. According to the time series data of meteorological elements such as wind speed, humidity, temperature and runway visibility observed by the civil aviation automated weather observing system of Xianyang Airport from 2012 to 2018, this study firstly analyzes the long-term correlation relationship between the RVR and other meteorological observation data. On the basis of the correlation analysis, this study also uses the long short term memory network (LSTM), which is the most commonly used in artificial intelligence field, to construct an airport RVR prediction model. The experiment results show that the average fitting degree of the model can reach 72% within 0–2 h.

    参考文献
    相似文献
    引证文献
引用本文

彭路,柳俊凯,盛爱晶,张兴海,孙文正.基于LSTM的机场跑道视程预测.计算机系统应用,2022,31(5):203-212

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-15
  • 最后修改日期:2021-08-18
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号