结合坐标注意力与自适应残差连接的logo检测方法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

陕西省科技计划重点项目(2017ZDCXL-GY-05-03)


Logo Detection Method Combining Coordinate Attention and Adaptive Residual Connection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    Logo检测在品牌识别和知识产权保护等领域有着广泛的应用. 针对logo检测中存在小尺度Logo检测性能差和logo定位不准的问题, 本文提出一种基于YOLOv4网络的logo检测方法, 将YOLOv4网络PANet模块中的5个连续卷积层用设计的自适应残差块替换, 增强浅层和深层的特征利用, 有侧重地进行特征融合, 同时优化网络训练; 并在自适应残差块之后使用坐标注意力机制, 通过精确的位置信息对通道关系和长期依赖性进行编码, 从融合的特征中过滤和增强对于检测更有用的特征; 最后采用K-means++聚类算法得到更适合logo数据集的先验框, 并分配给不同的特征尺度. 实验结果表明, 本文提出的方法在FlickrLogos-32和FlickrSportLogos-10数据集上的平均精度达到了88.09%和84.72%, 较原算法分别提高了0.91%和1.40%, 在定位精度和小尺度logo检测上的性能都显著提升.

    Abstract:

    Logo detection has a wide range of applications in areas such as brand recognition and intellectual property protection. In order to solve problems of poor detection performance on small-scale logo and inaccurate logo positioning, a logo detection method is proposed based on the YOLOv4 network. Five continuous convolutional layers in the PANet module of YOLOv4 network are replaced by the designed adaptive residual blocks to enhance the utilization of shallow and deep features and fuse features with emphasis and optimize the model training. And the coordinate attention mechanism is used after the adaptive residual blocks to encode channel relationship and long-term dependencies through precise location information, filter and enhance the more useful features from the fused features. The K-means++ clustering algorithm is used to obtain anchor boxes which are more suitable for the logo datasets and assign those to different feature scales. The experimental results show that the mean average precision of the proposed method on FlickrLogos-32 and FlickrSportLogos-10 datasets reaches 88.09% and 84.72%, which is 0.91% and 1.40% higher than the original algorithm, respectively. The performance of the proposed method in positioning accuracy and small-scale logo detection is significantly improved.

    参考文献
    相似文献
    引证文献
引用本文

王林,范亚臣.结合坐标注意力与自适应残差连接的logo检测方法.计算机系统应用,2022,31(5):137-146

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-13
  • 最后修改日期:2021-08-24
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号