基于CNN-BiLSTM的自动睡眠分期算法
作者:
基金项目:

广东省重点研发计划(2018B030339001); 国家自然科学基金面上项目 (62076103); 广东省自然科学基金面上项目 (2019A1515011375)


Sleep Staging Classification Based on CNN-BiLSTM
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • | | | |
  • 文章评论
    摘要:

    睡眠分期是睡眠数据分析的基础, 针对目前睡眠分期存在的依赖人工提取、人工判别效率低、自动睡眠分期准确率不高等问题, 本文研究模型是基于卷积神经网络和双向长短时记忆神经网络2个深度学习神经网络相结合的, 利用脑电信号来进行自动睡眠分期的模型方法. 算法能提取得到原始脑电信号的梅尔频谱, 利用卷积神经网络和双向长短时记忆神经网络进行时频域的特征提取, 卷积神经网络能够提取睡眠信号高级特征, 双向长短时记忆神经网络结合睡眠数据不同时期的关联性, 提高自动睡眠分期的准确率. 实验结果表明, 本文方法在Sleep-EDF数据集的3种状态睡眠分期任务中取得89.0%的平均准确率. 与传统的基于统计规则的分期模型相比, 本文模型的准确率更高, 且简单高效, 泛化性能更好. 本文算法适用于非线性、不稳定、有幅度起伏变动的脑电信号, 有效提高了自动睡眠分期模型结果的准确率, 对现代睡眠医学、睡眠障碍等分析研究具有一定的实用价值.

    Abstract:

    Sleep staging is the basis of sleep data analysis. Given the dependence on manual extraction, the inefficiency of manual classification, and the inaccuracy of automatic sleep staging of current sleep staging methods, this paper proposes a method that combines two deep-learning neural networks, namely the convolutional neural network (CNN) and the bidirectional long-short memory neural network (BiLSTM), and uses electroencephalogram (EEG) data to conduct automatic sleep staging. This algorithm can extractmelspectrograms toobtain the original EEG dataand uses CNN and BiLSTM to extractfeatures in the time domain and the frequency domain. CNN can extract the high-level features of sleep signals, and BiLSTM can improvethe accuracy of automatic sleep staging when combinedwith the correlation of sleep data of different stages. The experimental results show that the proposed methodachievesan average accuracy of 89.0% in the three-state sleep staging task on the Sleep-EDF dataset. Compared with the traditional staging model based on statistical rules, this model is simpler, more accurate, and more efficient and has better generalization performance. The proposed algorithm is suitable for nonlinear, unstable, and non-stationary EEG data and effectively improves the accuracy of the results of the automatic sleep staging model. It possesses practical value in modern sleep medicine, sleep disorders, and other research.

    参考文献
    [1] 林少倩. 基于脑电信号的睡眠自动分期研究[硕士学位论文]. 杭州: 浙江工业大学, 2020: 2
    [2] Hobson JA. A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Electroencephalography & Clinical Neurophysiology, 1968, 26(6): 644
    [3] Phan H, Andreotti F, Cooray N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Transactions on Biomedical Engineering, 2019, 66(5): 1285–1296. [doi: 10.1109/TBME.2018.2872652
    [4] Liang SF, Kuo CE, Hu YH, et al. Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE Transactions on Instrumentation and Measurement, 2012, 61(6): 1649–1657. [doi: 10.1109/TIM.2012.2187242
    [5] Zhang JM, Wu Y. A new method for automatic sleep stage classification. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(5): 1097–1110. [doi: 10.1109/TBCAS.2017.2719631
    [6] 徐富献. 基于深度学习的单通道睡眠分期研究[硕士学位论文]. 厦门: 厦门大学, 2019: 16–23
    [7] Supratak A, Dong H, Wu C, et al. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2017, 25(11): 1998–2008. [doi: 10.1109/TNSRE.2017.2721116
    [8] Mousavi S, Afghah F, Acharya UR. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PLoS One, 2019, 14(5): e0216456. [doi: 10.1371/journal.pone.0216456
    [9] Phan H, Andreotti F, Cooray N, et al. SeqSleepNet: End-to-end hierarchical recurrent neural network for sequence-to-sequence automatic sleep staging. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27(3): 400–410. [doi: 10.1109/TNSRE.2019.2896659
    [10] Cecotti H, Graser A. Convolutional neural networks for P300 detection with application to brain-computer interfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(3): 433–445. [doi: 10.1109/TPAMI.2010.125
    [11] 杨浩, 黄茂林, 蔡志鹏, 等. 融合CNN和BiLSTM的心律失常心拍分类模型. 中国生物医学工程学报, 2020, 39(6): 719–726. [doi: 10.3969/j.issn.0258-8021.2020.06.009
    [12] 李洋, 董红斌. 基于CNN和BiLSTM网络特征融合的文本情感分析. 计算机应用, 2018, 38(11): 3075–3080. [doi: 10.11772/j.issn.1001-9081.2018041289
    [13] 郭浩, 许伟, 卢凯, 等. 基于CNN和BiLSTM的短文本相似度计算方法. 信息技术与网络安全, 2019, 38(6): 61–64, 68
    [14] 罗森林, 郝靖伟, 潘丽敏. 基于CNN-BiLSTM的自动睡眠分期方法. 北京理工大学学报, 2020, 40(7): 746–752
    [15] Xiao YW, Wu J, Lin ZL, et al. A deep learning-based multi-model ensemble method for cancer prediction. Computer Methods and Programs in Biomedicine, 2018, 153: 1–9. [doi: 10.1016/j.cmpb.2017.09.005
    [16] Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM. Neural Computation, 2000, 12(10): 2451–2471. [doi: 10.1162/089976600300015015
    [17] 程俊华, 曾国辉, 鲁敦科, 等. 基于Dropout的改进卷积神经网络模型平均方法. 计算机应用, 2019, 39(6): 1601–1606. [doi: 10.11772/j.issn.1001-9081.2018122501
    [18] Tsinalis O, Matthews P M, Guo YK, et al. Automatic sleep stage scoring with single-channel EEG using convolutional neural networks. arXiv: 1610.01683, 2016.
    [19] Hassan AR, Bashar SK, Bhuiyan MIH. Automatic classification of sleep stages from single-channel electroencephalogram. Proceedings of 2015 Annual IEEE India Conference (INDICON). New Delhi: IEEE, 2015. 1–6.
    [20] Tsinalis O, Matthews PM, Guo YK. Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders. Annals of Biomedical Engineering, 2016, 44(5): 1587–1597. [doi: 10.1007/s10439-015-1444-y
    [21] Andreotti F, Phan H, Cooray N, et al. Multichannel sleep stage classification and transfer learning using convolutional neural networks. Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Honolulu: IEEE, 2018. 171–174.
    [22] Phan H, Andreotti F, Cooray N, et al. Joint classification and prediction CNN framework for automatic sleep stage classification. IEEE Transactions on Biomedical Engineering, 2019, 66(5): 1285–1296. [doi: 10.1109/TBME.2018.2872652
    [23] Chen T, Huang HY, Pan JH, et al. An EEG-based brain-computer interface for automatic sleep stage classification. Proceedings of the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). Wuhan: IEEE, 2018. 1988–1991.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

卢伊虹,吴礼祝,潘家辉.基于CNN-BiLSTM的自动睡眠分期算法.计算机系统应用,2022,31(4):180-187

复制
分享
文章指标
  • 点击次数:950
  • 下载次数: 2469
  • HTML阅读次数: 2916
  • 引用次数: 0
历史
  • 收稿日期:2021-07-11
  • 最后修改日期:2021-08-04
  • 在线发布日期: 2022-03-22
文章二维码
您是第11326053位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号