基于图信息的自监督多视角子空间聚类
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

西安市科技计划 (2020KJRC0027)


Self-supervised Multi-view Subspace Clustering with Graph Information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    多视角子空间聚类方法通常用于处理高维度、复杂结构的数据. 现有的大多数多视角子空间聚类方法通过挖掘潜在图信息进行数据分析与处理, 但缺乏对潜在子空间表示的监督过程. 针对这一问题, 本文提出一种新的多视角子空间聚类方法, 即基于图信息的自监督多视角子空间聚类(SMSC). 它将谱聚类与子空间表示相结合形成统一的深度学习框架. SMSC首先通过挖掘多视角数据的一阶图和二阶图构成潜在图信息, 其次利用聚类结果监督多个视角的公共潜在子空间学习过程. 通过在4个标准数据集上进行的广泛实验, 结果验证本文所提方法相较于传统的多视角子空间聚类方法更具有效性.

    Abstract:

    Multi-view subspace clustering methods are usually used to process high-dimensional and complex data. Most of the existing multi-view subspace clustering methods analyze and process data by mining potential graph information, with no supervision process for the representation of the potential subspace. To solve this problem, this study proposes a new multi-view subspace clustering method, namely self-supervised multi-view subspace clustering (SMSC) based on graph information. It combines spectral clustering with subspace representation to formulate a unified deep learning framework. SMSC constructs potential graph information by mining the first-order and second-order graphs of multi-view data and then uses clustering results to supervise the learning process of the common potential subspace of multi-view data. Extensive experiments on four standard datasets show that the proposed method is more effective than traditional multi-view subspace clustering methods.

    参考文献
    相似文献
    引证文献
引用本文

吴峰,刘改,刘诗仪.基于图信息的自监督多视角子空间聚类.计算机系统应用,2022,31(5):377-381

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-07
  • 最后修改日期:2021-08-11
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号