基于图注意力网络表示学习的协同过滤推荐算法
作者:

Collaborative Filtering Recommendation Algorithm Based on Graph Attention Network Representation Learning
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • | | | |
  • 文章评论
    摘要:

    针对传统的基于模型的协同过滤推荐算法未能有效利用用户与项目的属性信息以及用户之间与项目之间的关系结构信息, 本文提出一种基于图注意力网络表示学习的协同过滤推荐算法. 该算法使用知识图谱表示节点的属性特征信息和节点间的关系结构信息, 并在用户和项目的同质网络上进行节点的图注意力网络表示学习, 得到用户和项目的网络嵌入特征表示, 最后构建融合网络嵌入信息的神经矩阵分解模型获得推荐结果. 本文在Movielens数据集上与相关算法进行对比实验, 实验证明该算法能优化模型的推荐性能, 提高推荐的召回率HR@K和归一化折损累计增益NDCG@K.

    Abstract:

    Given that the traditional model-based collaborative filtering recommendation algorithm fails to effectively utilize the attributes of users and items and the relationship structures among users and items, this study proposes a collaborative filtering recommendation algorithm based onrepresentation learning with graph attention networks. The algorithm uses the knowledge graph to represent the attribute features of the nodes and the relationship structures among the nodes. Then, representation learning of nodes with graph attention networks is performed on the homogeneous networks of users and items to obtain their network embedding feature representations. Finally, a neural matrix factorization model integrating network embedding is constructed to obtain the recommendation results.This paper conducts comparative experiments with related algorithms on the Movielens dataset. Experiments show that the proposed algorithm can optimize the recommendation performance of the model and improve the recommended recall rate HR@K and the normalized discounted cumulative gain NDCG@K.

    参考文献
    [1] 代丽, 樊粤湘. 个性化推荐系统综述. 计算机时代, 2019, (6): 9–11, 15
    [2] 程晓娜. 基于隐式反馈的个性化推荐算法研究[硕士学位论文]. 杭州: 浙江大学, 2019.
    [3] 刘晶. 基于深度学习的协同过滤算法的研究[硕士学位论文]. 北京: 北京邮电大学, 2019.
    [4] Cheng HT, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston: ACM, 2016. 7–10.
    [5] Xue HJ, Dai XY, Zhang JB, et al. Deep matrix factorization models for recommender systems. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017. 3203–3209.
    [6] He XN, Du XY, Wang X, et al. Outer product-based neural collaborative filtering. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: IJCAI, 2018. 2227–2233.
    [7] 郭晓晓. 基于多类型隐式反馈置信度的协同过滤推荐算法研究[硕士学位论文]. 郑州: 郑州大学, 2019.
    [8] 刘峰, 王宝亮, 邹荣宇, 等. 基于随机游走的网络表示学习推荐算法研究. 计算机工程, 2020,
    [9] He XN, Liao LZ, Zhang HW, et al. Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web. Perth: ACM, 2017. 173–182.
    [10] 李同欢. 基于深度学习的推荐模型研究[硕士学位论文]. 重庆: 西南大学, 2019.
    [11] Wang JZ, Huang PP, Zhao H, et al. Billion-scale commodity embedding for e-commerce recommendation in Alibaba. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 839–848.
    [12] 刘峰, 王宝亮, 潘文采. 基于网络表示学习与深度学习的推荐算法研究. 计算机工程, 2021, 47(8): 54–61
    [13] Shi C, Hu BB, Zhao WX, et al. Heterogeneous information network embedding for recommendation. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(2): 357–370. [doi: 10.1109/TKDE.2018.2833443
    [14] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30–37. [doi: 10.1109/MC.2009.263
    [15] Veli?kovi? P, Cucurull G, Casanova A, et al. Graph attention networks. arXiv: 1710.10903, 2017.
    [16] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China: ACM, 2001. 285–295.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘锦涛,谢颖华.基于图注意力网络表示学习的协同过滤推荐算法.计算机系统应用,2022,31(4):273-280

复制
分享
文章指标
  • 点击次数:829
  • 下载次数: 1986
  • HTML阅读次数: 1906
  • 引用次数: 0
历史
  • 收稿日期:2021-06-30
  • 最后修改日期:2021-07-30
  • 在线发布日期: 2022-03-22
文章二维码
您是第11417138位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号