基于张量图卷积的多视图聚类
作者:
基金项目:

西安市科技计划(2020KJRC0027)


Tensor Graph Convolution Networks for Multi-view Clustering
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • | | | |
  • 文章评论
    摘要:

    针对多视图聚类进行的数据表示学习, 通常采用浅层模型与线性函数实现数据嵌入, 该方式无法有效挖掘多种视图间丰富的数据关系. 为充分表示不同视图间的一致性信息与互补性信息, 本文提出基于张量图卷积的多视图聚类方法(TGCNMC). 该方法首先将传统的平面图拼接为张量图, 并采用张量图卷积学习各视图中数据的近邻结构; 接着利用图间卷积进行多视图间的信息传递, 从而捕获多视图数据间的协同作用, 揭示多视图数据中的一致性与互补性信息; 最后采用自监督方式进行数据聚类. 通过在标准数据集上进行的广泛实验, 聚类效果优于现有的方法, 表明该方法可以更全面的描述多视图数据、更有效地挖掘视图间的关系并具有更好的处理下游聚类任务的能力.

    Abstract:

    The shallow models and linear functions are usually utilized for data embedding in data representation learning aimed at multi-view clustering. This strategy, however, cannot effectively mine the rich data relationships among the multiple views. For better representation of the consistency and complementarity information among different views, a tensor graph convolution network for multi-view clustering (TGCNMC) is proposed in this study. This method splices the traditional plane graphs into tensor graphs and uses tensor graph convolution to learn the neighbor relationships of the data in each view. Then, inter-graph convolution is adopted to transfer information among multiple views and thereby to capture the synergistic effect among the data of multiple views and reveal the consistency and complementarity information in those data. Finally, the self-monitoring method is employed for data clustering. Extensive experiments are carried out on standard data sets and the corresponding clustering results are better than those of the existing methods, which indicates that this method can represent multi-view data comprehensively, mine the relationships among views effectively, and deal with downstream clustering tasks beneficially.

    参考文献
    [1] Gao XJ, Mu TT, Goulermas JY, et al. Topic driven multimodal similarity learning with multi-view voted convolutional features. Pattern Recognition, 2018, 75: 223–234. [doi: 10.1016/j.patcog.2017.02.035
    [2] 宗林林. 多视角聚类研究[博士学位论文]. 大连: 大连理工大学, 2017.
    [3] Elhamifar E, Vidal R. Sparse subspace clustering: Algorithm, theory, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(11): 2765–2781. [doi: 10.1109/TPAMI.2013.57
    [4] Kumar A, Daume III H. A co-training approach for multi-view spectral clustering. Proceedings of the 28th International Conference on International Conference on Machine Learning. Bellevue, Washington: ACM, 2011. 393–400.
    [5] Brbi? M, Kopriva I. Multi-view low-rank sparse subspace clustering. Pattern Recognition, 2018, 73: 247–258. [doi: 10.1016/j.patcog.2017.08.024
    [6] Luo SR, Zhang CQ, Zhang W, et al. Consistent and specific multi-view subspace clustering. Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018. 3730–3737.
    [7] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations. Toulon: OpenReview. net, 2017.
    [8] Kipf TN, Welling M. Variational graph auto-encoders. arXiv: 1611.07308, 2016.
    [9] Bo DY, Wang X, Shi C, et al. Structural deep clustering network. Proceedings of Web Conference 2020. Taipei: ACM, 2020. 1400–1410.
    [10] Wang C, Pan SR, Hu RQ, et al. Attributed graph clustering: A deep attentional embedding approach. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China: IJCAI, 2019. 3670–3676.
    [11] Jing BT, Tong HH, Zhu YD. Network of tensor time series. Proceedings of Web Conference 2021. Ljubljana: ACM, 2021. 2425–2437.
    [12] 白铂, 刘玉婷, 马驰骋, 等. 图神经网络. 中国科学: 数学, 2020, 50(3): 367–384
    [13] Gori M, Monfardini G, Scarselli F. A new model for learning in graph domains. Proceedings of 2015 IEEE International Joint Conference on Neural Networks. Montreal: IEEE, 2005. 729–734.
    [14] Bruna J, Zaremba W, Szlam A, et al. Spectral networks and locally connected networks on graphs. Proceedings of the 2nd International Conference on Learning Representations. Banff: ICLR, 2014.
    [15] Defferrard M, Bresson X, Vandergheynst P. Convolutional neural networks on graphs with fast localized spectral filtering. Proceedings of the 30th International Conference on Neural Information Processing Systems. Barcelona, Spain: NIPS, 2016: 3844–3852.
    [16] Zhang HY, Zhang R, Li XL. Embedding graph auto-encoder for graph clustering. arXiv: 2002.08643, 2020.
    [17] Leung CK, Cuzzocrea A, Mai JJ, et al. Personalized deepinf: Enhanced social influence prediction with deep learning and transfer learning. Proceedings of 2019 IEEE International Conference on Big Data. Los Angeles: IEEE, 2019. 2871–2880.
    [18] Zitnik M, Agrawal M, Leskovec J. Modeling polypharmacy side effects with graph convolutional networks. Bioinformatics, 2018, 34(13): i457–i466. [doi: 10.1093/bioinformatics/bty294
    [19] Yao L, Mao CS, Luo Y. Graph convolutional networks for text classification. Proceedings of the the 33rd AAAI Conference on Artificial Intelligence, the 31st Conference on Innovative Applications of Artificial Intelligence, the 9th Symposium on Educational Advances in Artificial Intelligence. Honolulu: AAAI, 2019. 7370–7377.
    [20] Chao GQ, Sun SL, Bi JB. A survey on multi-view clustering. arXiv: 1712.06246, 2017.
    [21] De Sa VR. Spectral clustering with two views. Proceedings of Workshop on Learning with Multiple Views. Bonn: ICML, 2005. 20–27.
    [22] Zhou DY, Burges CJC. Spectral clustering and transductive learning with multiple views. Proceedings of the 24th International Conference on Machine Learning. Corvalis: ACM, 2007. 1159–1166.
    [23] Cheng W, Zhang X, Guo ZS, et al. Flexible and robust co-regularized multi-domain graph clustering. Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data mining. Chicago: ACM, 2013. 320–328.
    [24] Zhan K, Nie FP, Wang J, et al. Multiview consensus graph clustering. IEEE Transactions on Image Processing, 2019, 28(3): 1261–1270. [doi: 10.1109/TIP.2018.2877335
    [25] Fan SH, Wang X, Shi C, et al. One2Multi graph autoencoder for multi-view graph clustering. Proceedings of Web Conference 2020. Taipei: ACM, 2020. 3070–3076.
    [26] Nie FP, Li J, Li XL. Self-weighted multiview clustering with multiple graphs. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: ijcai. org, 2017. 2564–2570.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘改,吴峰,刘诗仪.基于张量图卷积的多视图聚类.计算机系统应用,2022,31(4):296-302

复制
分享
文章指标
  • 点击次数:871
  • 下载次数: 1767
  • HTML阅读次数: 2037
  • 引用次数: 0
历史
  • 收稿日期:2021-06-22
  • 最后修改日期:2021-07-20
  • 在线发布日期: 2022-03-22
文章二维码
您是第11416991位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号