摘要:针对监督分类中的特征选择问题, 提出一种基于量子进化算法的包装式特征选择方法. 首先分析了现有子集评价方法存在过度偏好分类精度的缺点, 进而提出基于固定阈值和统计检验的两种子集评价方法. 然后改进了量子进化算法的进化策略, 即将整个进化过程分为两个阶段, 分别选用个体极值和全局极值作为种群的进化目标. 在此基础上, 按照包装式特征选择遵循的一般框架设计了特征选择算法. 最后, 通过15个UCI数据集分别验证了子集评价方法和进化策略的有效性, 以及新方法相较于其它6种特征选择方法的优越性. 结果表明, 新方法在80%以上的数据集上取得相似甚至更好的分类精度, 在86.67%的数据集上选择了特征个数更小的子集.