基于CRT的无损高效门限彩色图像秘密共享信息隐藏算法
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61370188); 北京市教委科研计划(KM202010015009); 北京市教委科研计划(KM202110015004); 北京印刷学院博士启动金项目(27170120003/020); 北京印刷学院科研创新团队项目(Eb202101)


Lossless and Efficient Threshold Color Image Secret Sharing and Information Hiding Algorithm Based on CRT
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目前对秘密图像共享的研究主要集中在灰度图像上, 而日常生活中使用的图像大多是彩色的, 因此, 研究彩色图像的秘密共享具有重要的意义和应用价值. 该方案将基于中国剩余定理(CRT)的秘密共享与DCT信息隐藏技术进行结合, 保障了传输彩色秘密图像的安全性. 在生成端, 利用DCT信息隐藏算法将彩色秘密图像通过CRT生成的彩色秘密影子图像, 嵌入至用户提供的彩色载体图像中, 并分发. 在恢复端提取出影子图像, 使用CRT恢复彩色秘密图像. 该过程满足(t, n)门限. 实验结果验证, 该算法可实现无损恢复, 并用相关参数对该方案进行评估, 优于其他方案.

    Abstract:

    At present, the research on secret image sharing mainly focuses on gray-scale images. However, most used in daily life are color images. Therefore, it is of great significance and application value to study the secret sharing of color images. The scheme combines the secret sharing based on the Chinese remainder theorem (CRT) with DCT information hiding technology to ensure the security of color secret image transmission. At the generation end, the color secret shadow image generated by CRT is embedded into the color carrier image of users and distributed by DCT information hiding algorithm. The shadow image is extracted at the recovery end, and the color secret image is recovered by CRT. The process satisfies the (t, n) threshold. The experimental results show that the algorithm can achieve lossless recovery, and the evaluation with relevant parameters reveals that the scheme outperforms other ones.

    参考文献
    相似文献
    引证文献
引用本文

陈维启,张珍珍,李祯祯,丁海洋,李子臣.基于CRT的无损高效门限彩色图像秘密共享信息隐藏算法.计算机系统应用,2022,31(5):269-276

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-07-07
  • 最后修改日期:2021-08-04
  • 录用日期:
  • 在线发布日期: 2022-04-11
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号