基于CRT的无损高效门限彩色图像秘密共享信息隐藏算法
作者:
基金项目:

国家自然科学基金(61370188); 北京市教委科研计划(KM202010015009); 北京市教委科研计划(KM202110015004); 北京印刷学院博士启动金项目(27170120003/020); 北京印刷学院科研创新团队项目(Eb202101)


Lossless and Efficient Threshold Color Image Secret Sharing and Information Hiding Algorithm Based on CRT
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前对秘密图像共享的研究主要集中在灰度图像上, 而日常生活中使用的图像大多是彩色的, 因此, 研究彩色图像的秘密共享具有重要的意义和应用价值. 该方案将基于中国剩余定理(CRT)的秘密共享与DCT信息隐藏技术进行结合, 保障了传输彩色秘密图像的安全性. 在生成端, 利用DCT信息隐藏算法将彩色秘密图像通过CRT生成的彩色秘密影子图像, 嵌入至用户提供的彩色载体图像中, 并分发. 在恢复端提取出影子图像, 使用CRT恢复彩色秘密图像. 该过程满足(t, n)门限. 实验结果验证, 该算法可实现无损恢复, 并用相关参数对该方案进行评估, 优于其他方案.

    Abstract:

    At present, the research on secret image sharing mainly focuses on gray-scale images. However, most used in daily life are color images. Therefore, it is of great significance and application value to study the secret sharing of color images. The scheme combines the secret sharing based on the Chinese remainder theorem (CRT) with DCT information hiding technology to ensure the security of color secret image transmission. At the generation end, the color secret shadow image generated by CRT is embedded into the color carrier image of users and distributed by DCT information hiding algorithm. The shadow image is extracted at the recovery end, and the color secret image is recovered by CRT. The process satisfies the (t, n) threshold. The experimental results show that the algorithm can achieve lossless recovery, and the evaluation with relevant parameters reveals that the scheme outperforms other ones.

    参考文献
    [1] Li L, Abd El-Latif AA, Shi ZF, et al. A new loss-tolerant image encryption scheme based on secret sharing and two chaotic systems. Research Journal of Applied Sciences, Engineering and Technology, 2012, 4(8): 877–883
    [2] Abd El-Latif AA, Li L, Wang N, et al. A new approach to chaotic image encryption based on quantum chaotic system, exploiting color spaces. Signal Processing, 2013, 93(11): 2986–3000. [doi: 10.1016/j.sigpro.2013.03.031
    [3] Jiang N, Zhao N, Wang L. LSB based quantum image steganography algorithm. International Journal of Theoretical Physics, 2016, 55(1): 107–123. [doi: 10.1007/s10773-015-2640-0
    [4] Yeung Y, Lu W, Xue YJ, et al. Secure binary image steganography based on LTP distortion minimization. Multimedia Tools and Applications, 2019, 78(17): 25079–25100. [doi: 10.1007/s11042-019-7731-0
    [5] Shamir A. How to share a secret. Communications of the ACM, 1979, 22(11): 612–613. [doi: 10.1145/359168.359176
    [6] Thien CC, Lin JC. Secret image sharing. Computers & Graphics, 2002, 26(5): 765–770
    [7] Asmuth C, Bloom J. A modular approach to key safeguarding. IEEE Transactions on Information Theory, 1983, 29(2): 208–210. [doi: 10.1109/TIT.1983.1056651
    [8] Mignotte M. How to share a secret. Proceedings of the Workshop on Cryptography. Burg Feuerstein: Springer, 1983. 371–375.
    [9] Tan LD, Lu YL, Yan XH, et al. Weighted secret image sharing for a (k, n) threshold based on the Chinese remainder theorem. IEEE Access, 2019, 7: 59278–59286. [doi: 10.1109/ACCESS.2019.2914515
    [10] Li LL, Lu YL, Yan XH, et al. Lossless (k, n)-threshold image secret sharing based on the Chinese remainder theorem without auxiliary encryption. IEEE Access, 2019, 7: 75113–75121. [doi: 10.1109/ACCESS.2019.2921612
    [11] Lin CC, Tsai WH. Secret image sharing with steganography and authentication. Journal of Systems and Software, 2004, 73(3): 405–414. [doi: 10.1016/S0164-1212(03)00239-5
    [12] Chang CC, Lin CC, Lin CH, et al. A novel secret image sharing scheme in color images using small shadow images. Information Sciences, 2008, 178(11): 2433–2447. [doi: 10.1016/j.ins.2007.12.016
    [13] Yan XH, Liu X, Yang CN. An enhanced threshold visual secret sharing based on random grids. Journal of Real-Time Image Processing, 2018, 14(1): 61–73. [doi: 10.1007/s11554-015-0540-4
    [14] 闫伟齐, 丁玮, 齐东旭. 基于中国剩余定理的图像分存方法. 北方工业大学学报, 2000, 12(1): 6–9
    [15] Ulutas M, Nabiyev VV, Ulutas G. A new secret image sharing technique based on Asmuth Bloom’s scheme. Proceedings of the International Conference on Application of Information and Communication Technologies (AICT). Baku: IEEE, 2009. 1–5.
    [16] Hu CQ, Liao XF, Xiao D. Secret image sharing based on chaotic map and Chinese remainder theorem. International Journal of Wavelets, Multiresolution and Information Processing, 2012, 10(3): 1250023. [doi: 10.1142/S0219691312500233
    [17] Chuang TW, Chen CC, Chien B. Image sharing and recovering based on Chinese remainder theorem. Proceedings of the International Symposium on Computer, Consumer and Control. Xi’an: IEEE, 2016. 817–820.
    [18] Wu XT, Yang CN. Probabilistic color visual cryptography schemes for black and white secret images. Journal of Visual Communication and Image Representation, 2020, 70: 102793. [doi: 10.1016/j.jvcir.2020.102793
    [19] Wang L, Yan B, Yang HM, et al. Flip extended visual cryptography for gray-scale and color cover images. Symmetry, 2021, 13(1): 65
    [20] Prasetyo H, Hsia CH. Lossless progressive secret sharing for grayscale and color images. Multimedia Tools and Applications, 2019, 78(17): 24837–24862. [doi: 10.1007/s11042-019-7710-5
    [21] Mhala NC, Pais AR. Contrast enhancement of Progressive Visual Secret Sharing (PVSS) scheme for gray-scale and color images using super-resolution. Signal Processing, 2019, 162: 253–267. [doi: 10.1016/j.sigpro.2019.04.023
    [22] Blesswin AJ, Raj C, Sukumaran R, et al. Enhanced semantic visual secret sharing scheme for the secure image communication. Multimedia Tools and Applications, 2020, 79(23–24): 17057–17079.
    [23] Deng YN, Kenney C, Moore MS, et al. Peer group filtering and perceptual color image quantization. IEEE International Symposium on Circuits and Systems. Orlando: IEEE, 1999. 21–24.
    [24] 唐明伟. 图像信息隐藏与隐藏分析算法研究[博士学位论文]. 成都: 电子科技大学, 2012.
    [25] Yuan HD. Secret sharing with multi-cover adaptive steganography. Information Sciences, 2014, 254: 197–212. [doi: 10.1016/j.ins.2013.08.012
    [26] Singh P, Raman B. Reversible data hiding based on Shamir’s secret sharing for color images over cloud. Information Sciences, 2018, 422: 77–97. [doi: 10.1016/j.ins.2017.08.077
    [27] Gong QH, Wang YJ, Yan XH, et al. Efficient and lossless polynomial-based secret image sharing for color images. IEEE Access, 2019, 7: 113216–113222. [doi: 10.1109/ACCESS.2019.2934999
    [28] Shyu SJ, Chen YR. Threshold secret image sharing by Chinese remainder theorem. Proceedings of the IEEE Asia-Pacific Services Computing Conference. Yilan: IEEE, 2008. 1332–1337.
    [29] Yan XH, Lu YL, Liu LT, et al. Chinese remainder theorem-based two-in-one image secret sharing with three decoding options. Digital Signal Processing, 2018, 82: 80–90. [doi: 10.1016/j.dsp.2018.07.015
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈维启,张珍珍,李祯祯,丁海洋,李子臣.基于CRT的无损高效门限彩色图像秘密共享信息隐藏算法.计算机系统应用,2022,31(5):269-276

复制
分享
文章指标
  • 点击次数:930
  • 下载次数: 1736
  • HTML阅读次数: 1664
  • 引用次数: 0
历史
  • 收稿日期:2021-07-07
  • 最后修改日期:2021-08-04
  • 在线发布日期: 2022-04-11
文章二维码
您是第11209279位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号