智能推荐系统研究综述
作者:
基金项目:

中国高等教育学会专项课题(2020JXD01); 广东省普通高校“人工智能”重点领域专项(2019KZDZX1027); 广东高校省级重点平台和重大科研项目(2017KTSCX048); 广东省公益研究与能力建设(2018B070714018); 广东省中医药局科研项目(20191411); 广东省高等学校产业学院建设项目(人工智能机器人教育产业学院)


Survey on Intelligent Recommendation System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    伴随着电子商务平台和新型数字媒体服务迅速发展, 网络数据规模持续增长, 数据类型呈现多样化, 如何从大规模数据中挖掘有价值的信息, 已经成为信息技术的一项巨大挑战. 推荐系统能够缓解“信息过载”问题, 挖掘数据潜在价值, 将个性化信息推送给有需要的用户, 提高信息利用率. 深度学习的表征能力与推荐系统相融合, 有助于深层次地挖掘用户需求, 提供精准的个性化推荐服务. 本文首先分析传统推荐算法的优缺点, 再总结深度学习技术在推荐系统中的研究进展. 最后, 分析和展望智能推荐系统未来发展方向.

    Abstract:

    With the rapid development of e-commerce platforms and new digital media services, the scale of network data continues to grow and data types are diversified. The mining of valuable information from large-scale data has become a huge challenge for information technology. Recommendation systems can alleviate the “information overload” problem, explore the potential value of data, push personalized information to users in need, and improve information utilization. The combination of the representational capabilities of deep learning and recommendation systems helps to dig deeper into user needs and provide accurate personalized recommendation services. This study analyzes the advantages and disadvantages of traditional recommendation algorithms, summarizes the research progress of deep learning technology in recommendation systems, and probes into the future development directions of intelligent recommendation systems.

    参考文献
    [1] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述. 计算机学报, 2018, 41(7): 1619–1647. [doi: 10.11897/SP.J.1016.2018.01619
    [2] Zhang S, Yao L, Sun AX, et al. Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 2019, 52(1): 5
    [3] Mu RH. A survey of recommender systems based on deep learning. IEEE Access, 2018, 6: 69009–69022. [doi: 10.1109/ACCESS.2018.2880197
    [4] Sarwar B, Karypis G, Konstan J, et al. Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web. Hong Kong, China: ACM, 2001. 285–295.
    [5] Linden G, Smith B, York J. Amazon. com recommendations:Item-to-item collaborative filtering. IEEE Internet Computing, 2003, 7(1): 76–80
    [6] Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30–37. [doi: 10.1109/MC.2009.263
    [7] Richardson M, Dominowska E, Ragno R. Predicting clicks: Estimating the click-through rate for new ads. Proceedings of the 16th International Conference on World Wide Web. Banff: ACM, 2007. 521–530.
    [8] Gai K, Zhu XQ, Li H, et al. Learning piece-wise linear models from large scale data for ad click prediction. arXiv: 1704.05194, 2017.
    [9] Rendle S. Factorization machines. Proceedings of 2010 IEEE International Conference on Data Mining. Sydney: IEEE, 2010. 995–1000.
    [10] Juan YC, Zhuang Y, Chin WS, et al. Field-aware factorization machines for CTR prediction. Proceedings of the 10th ACM Conference on Recommender Systems. Boston: ACM, 2016. 43–50.
    [11] He XR, Pan JF, Jin O, et al. Practical lessons from predicting clicks on ads at facebook. Proceedings of the Eighth International Workshop on Data Mining for Online Advertising. New York: ACM, 2014. 1–9.
    [12] Ruck DW, Rogers SK, Kabrisky M. Feature selection using a multilayer perceptron. Neural Network Computing, 1990, 2(2): 40–48
    [13] de Andrade A. Best practices for convolutional neural networks applied to object recognition in images. arXiv: 1910.13029, 2019.
    [14] Medsker LR, Jain LC. Recurrent Neural Networks: Design and Applications. New York: CRC Press, 2001. 64–67.
    [15] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735
    [16] Cho K, van Merri?nboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv: 1406.1078, 2014.
    [17] 陈海涵, 吴国栋, 李景霞, 等. 基于注意力机制的深度学习推荐研究进展. 计算机工程与科学, 2021, 43(2): 370–380
    [18] Grbovic M, Cheng HB. Real-time personalization using embeddings for search ranking at airbnb. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 311–320.
    [19] Zhao K, Li YC, Shuai ZQ, et al. Learning and transferring IDs representation in E-commerce. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1031–1039.
    [20] Barkan O, Koenigstein N. ITEM2VEC: Neural item embedding for collaborative filtering. Proceedings of 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing. Vietri sul Mare: IEEE, 2016. 1–6.
    [21] Wang JZ, Huang PP, Zhao H, et al. Billion-scale commodity embedding for E-commerce recommendation in Alibaba. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 839–848.
    [22] Shu W, Tang YY, Zhu YQ, et al. Session-based recommendation with graph neural networks. arXiv: 1811.00855, 2019.
    [23] Wang RX, Fu B, Fu G, et al. Deep & cross network for ad click predictions. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Halifax: ACM, 2017. 12.
    [24] Covington P, Adams J, Sargin E. Deep neural networks for YouTube recommendations. Proceedings of the 10th ACM Conference on Recommender Systems. Boston: ACM, 2016. 191–198.
    [25] Cheng HT, Koc L, Harmsen J, et al. Wide & deep learning for recommender systems. Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. Boston: ACM, 2016. 7–10.
    [26] Guo HF, Tang RM, Ye YM, et al. DeepFM: A factorization-machine based neural network for CTR prediction. arXiv: 1703.04247, 2017.
    [27] Zhang JL, Huang TW, Zhang ZQ. FAT-DeepFFM: Field attentive deep field-aware factorization machine. arXiv: 1905.06336, 2019.
    [28] He XN, Chua TS. Neural factorization machines for sparse predictive analytics. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. Shinjuku: ACM, 2017. 355–364.
    [29] He XN, Liao LZ, Zhang HW, et al. Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 2017. 173–182
    [30] Wang ZQ, She QY, Zhang PT, et al. Correct normalization matters: Understanding the effect of normalization on deep neural network models for click-through rate prediction. arXiv: 2006.12753, 2020.
    [31] Huang TW, She QQ, Wang ZQ, et al. GateNet: Gating-enhanced deep network for click-through rate prediction. arXiv: 2007.03519, 2020.
    [32] Wang JY, Chen YB, Chakraborty R, et al. Orthogonal convolutional neural networks. Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 11502–11512.
    [33] Zhou J, Albatal R, Gurrin C. Applying visual user interest profiles for recommendation and personalisation. Proceedings of the 22nd International Conference on Multimedia Modeling. Miami: Springer International Publishing, 2016. 361–366.
    [34] Tang JX, Wang K. Personalized top-N sequential recommendation via convolutional sequence embedding. Proceedings of 11th ACM International Conference on Web Search and Data Mining. Marina: ACM, 2018. 565–573.
    [35] Shen XX, Yi BL, Zhang ZL, et al. Automatic recommendation technology for learning resources with convolutional neural network. Proceedings of 2016 International Symposium on Educational Technology (ISET). Beijing: IEEE, 2016. 30–34.
    [36] Gong YY, Zhang Q. Hashtag recommendation using attention-based convolutional neural network. Proceedings of the 25th International Joint Conference on Artificial Intelligence. New York: AAAI Press, 2016. 2782–2788.
    [37] Zheng L, Noroozi V, Yu PS. Joint deep modeling of users and items using reviews for recommendation. Proceedings of the 10th ACM International Conference on Web Search and Data Mining. Cambridge: ACM, 2017. 425–434.
    [38] Liu B, Tang RM, Chen YZ, et al. Feature generation by convolutional neural network for click-through rate prediction. Proceedings of the World Wide Web Conference. San Francisco: ACM, 2019. 1119–1129.
    [39] Liu H, Lu J, Yang H, et al. Category-specific CNN for visual-aware CTR prediction at JD. com. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Virtual Event: ACM, 2020. 2686–2696.
    [40] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-based recommendations with recurrent neural networks. arXiv: 1511.06939, 2016.
    [41] Hidasi B, Karatzoglou A. Recurrent neural networks with top-k gains for session-based recommendations. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. Torino: ACM, 2018. 843–852.
    [42] Devooght R, Bersini H. Collaborative filtering with recurrent neural networks. arXiv: 1608.07400, 2017.
    [43] Donkers T, Loepp B, Ziegler J. Sequential user-based recurrent neural network recommendations. Proceedings of the 11th ACM Conference on Recommender Systems. Como: ACM, 2017. 152–160.
    [44] Li Z, Zhao HK, Liu Q, et al. Learning from history and present: Next-item recommendation via discriminatively exploiting user behaviors. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1734–1743.
    [45] Feng YF, Lv FY, Shen WC, et al. Deep session interest network for click-through rate prediction. Proceedings of the 28h International Joint Conference on Artificial Intelligence. Macao: IJCAI.org, 2019. 2301–2307.
    [46] Zhou GR, Zhu XQ, Song CR, et al. Deep interest network for click-through rate prediction. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1059–1068.
    [47] Zhou GR, Mou N, Fan Y, et al. Deep interest evolution network for click-through rate prediction. arXiv: 1809.03672, 2018.
    [48] Zhou C, Bai JZ, Song JS, et al. ATRank: An attention-based user behavior modeling framework for recommendation. arXiv: 1711.06632, 2017.
    [49] Xiao J, Ye H, He XN, et al. Attentional factorization machines: Learning the weight of feature interactions via attention networks. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, 2017. 3119–3125.
    [50] Song WP, Shi CC, Xiao ZP, et al. AutoInt: Automatic feature interaction learning via self-attentive neural networks. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 1161–1170.
    [51] Sun F, Liu J, Wu J, et al. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer. Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019. 1441–1450.
    [52] Ouyang WT, Zhang XW, Li L, et al. Deep spatio-temporal neural networks for click-through rate prediction. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. Anchorage: ACM, 2019. 2078–2086.
    [53] Chen QW, Zhao H, Li W, et al. Behavior sequence transformer for e-commerce recommendation in Alibaba. Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data. Anchorage: ACM, 2019. 12.
    [54] Wang X, He XN, Feng FL, et al. TEM: Tree-enhanced embedding model for explainable recommendation. Proceedings of the 2018 World Wide Web Conference. Lyon, 2018. 1543–1552.
    [55] Zhu H, Li X, Zhang PY, et al. Learning tree-based deep model for recommender systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018. 1079–1088.
    [56] Su YX, Zhang R, Erfani S, et al. Detecting beneficial feature interactions for recommender systems. arXiv: 2008.00404, 2021.
    [57] Zhang K, Qian H, Cui Q, et al. Multi-interactive attention network for fine-grained feature learning in CTR prediction. Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Virtual Event: ACM, 2021. 984–992.
    [58] Deng W, Pan JW, Zhou T, et al. DeepLight: Deep lightweight feature interactions for accelerating CTR predictions in Ad serving. Proceedings of the 14th ACM International Conference on Web Search and Data Mining. Virtual Event: ACM, 2021. 922–930.
    [59] Murugan P, Durairaj S. Regularization and optimization strategies in deep convolutional neural network. arXiv: 1712.04711, 2017.
    [60] Srivastava N, Hinton G, Krizhevsky A, et al. Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 2014, 15(1): 1929–1958
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

胡琪,朱定局,吴惠粦,巫丽红.智能推荐系统研究综述.计算机系统应用,2022,31(4):47-58

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-11
  • 最后修改日期:2021-07-14
  • 在线发布日期: 2022-03-22
文章二维码
您是第11482128位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号