摘要:在传统的一阶隐马尔可夫模型(HMM1)中, 状态序列中的每一个状态被假设只与前一个状态有关, 这样虽然可以简单、有效地推导出模型的学习和识别算法, 但也丢失了许多从上文传递下来的信息. 因此, 在传统一阶隐马尔可夫模型的基础上, 为了解决手语识别困难、正确率低的问题, 提出了一种基于二阶隐马尔可夫模型(HMM2)的连续手语识别方法. 该方法利用滑动窗口算法使手语视频切分成多个手语短视频, 通过三维卷积模型得到手语短视频和手语词汇视频的特征向量, 由此计算出二阶隐马尔可夫模型的相关参数, 并运用Viterbi算法实现连续手语的识别. 实验证明, 基于二阶隐马尔可夫模型的手语识别取得了88.6%的识别准确率, 高于传统的一阶隐马尔可夫模型.