移动社会网络中基于全局信任模型的用户影响力计算
作者:
基金项目:

国家自然科学基金(U1905211, 61771140, 61702100, 61702103); 企事业合作项目(DH-1565, DH-1412)


Global Trust Model Based Users’ Influence Calculation in Mobile Social Networks
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对现有算法和模型对于网络中用户影响力计算大多只考虑拓扑结构和贪心算法而较少考虑真实社会网络中信任度对于节点影响力的重要性这一问题, 该文提出一种全局信任模型(global trust model, GTM)用于评估节点的影响力. 首先计算节点与邻居节点间的信任关系作为局部信任度, 其次利用Beta信誉模型在节点局部信任度的基础上得到全局信任度, 最后根据节点的全局信任度评估节点的影响力大小. 在真实的网络数据集上对该模型与经典影响力算法进行实验对比, 结果表明, 该文提出的方法不仅具有更低的时间复杂度, 并且在保证节点可信度与精确度的同时也具有良好的影响传播能力.

    Abstract:

    To address the problem that most existing algorithms and models for calculating user influence in networks only consider topology and greedy algorithms and rarely take into account the importance of trust degree on node influence, this paper proposed a global trust model (GTM) for evaluating node influence. The trust relationships of a node with its neighbor nodes were calculated as the local trust degrees. Then, the Beta reputation model was used to obtain the global trust degree through the local trust degrees of the node. Finally, the node influence was evaluated according to the global trust degree of the node. Experiments were conducted on real network datasets to compare this model with classical influence algorithms. The experimental results show that the proposed method not only has lower time complexity but also demonstrates a favorable influence propagation ability in addition to ensuring node trustworthiness and accuracy.

    参考文献
    [1] Banerjee S, Jenamani M, Pratihar DK. A survey on influence maximization in a social network. Knowledge and Information Systems, 2020, 62(9): 3417–3455. [doi: 10.1007/s10115-020-01461-4
    [2] Liang XH, Zhang K, Shen XM, et al. Security and privacy in mobile social networks: Challenges and solutions. IEEE Wireless Communications, 2014, 21(1): 33–41. [doi: 10.1109/MWC.2014.6757895
    [3] Kayastha N, Niyato D, Wang P, et al. Applications, architectures, and protocol design issues for mobile social networks: A survey. Proceedings of the IEEE, 2011, 99(12): 2130–2158. [doi: 10.1109/JPROC.2011.2169033
    [4] Dong ZB, Song GJ, Xie KQ, et al. An experimental study of large-scale mobile social network. Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009. 1175–1176.
    [5] Pietil?nen AK, Diot C. Dissemination in opportunistic social networks: The role of temporal communities. Proceedings of the 13th ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2012. 165–174.
    [6] Freeman LC. Centrality in social networks conceptual clarification. Social Networks, 1978, 1(3): 215–239. [doi: 10.1016/0378-8733(78)90021-7
    [7] Freeman LC. A set of measures of centrality based on betweenness. Sociometry, 1977, 40(1): 35–41. [doi: 10.2307/3033543
    [8] Page L, Brin S, Motwani R, et al. The PageRank citation ranking: Bringing order to the web. Stanford: Stanford InfoLab, 1998.
    [9] 陆晓野, 陈玮. 基于社区的关键节点挖掘算法. 计算机系统应用, 2012, 21(4): 250–253, 197. [doi: 10.3969/j.issn.1003-3254.2012.04.057
    [10] 张宪立, 唐建新, 曹来成. 基于反向PageRank的影响力最大化算法. 计算机应用, 2020, 40(1): 96–102
    [11] Kitsak M, Gallos LK, Havlin S, et al. Identification of influential spreaders in complex networks. Nature Physics, 2010, 6(11): 888–893. [doi: 10.1038/nphys1746
    [12] Dorogovtsev SN, Goltsev AV, Mendes JFF. K-core organization of complex networks. Physical Review Letters, 2006, 96(4): 040601. [doi: 10.1103/PhysRevLett.96.040601
    [13] Morone F, Makse HA. Influence maximization in complex networks through optimal percolation. Nature, 2015, 524(7563): 65–68. [doi: 10.1038/nature14604
    [14] 宋甲秀, 杨晓翠, 张曦煌. 复杂网络中Top-k影响力节点的识别算法. 计算机科学与探索, 2018, 12(6): 928–939. [doi: 10.3778/j.issn.1673-9418.1711065
    [15] 康玲, 项冰冰, 翟素兰, 等. 基于区域密度曲线识别网络上的多影响力节点. 物理学报, 2018, 67(19): 198901. [doi: 10.7498/aps.67.20181000
    [16] 杨书新, 梁文, 朱凯丽. 基于三级邻居的复杂网络节点影响力度量方法. 电子与信息学报, 2020, 42(5): 1140–1148. [doi: 10.11999/JEIT190440
    [17] Kempe D, Kleinberg J, Tardos é. Maximizing the spread of influence through a social network. Proceedings of the 9th ACM SIGKDD International Conference on KNOWLEDGE Discovery and Data Mining. New York: ACM, 2003. 137–146.
    [18] Leskovec J, Krause A, Guestrin C, et al. Cost-effective outbreak detection in networks. Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2007. 420–429.
    [19] Kim J, Kim SK, Yu H. Scalable and parallelizable processing of influence maximization for large-scale social networks. Proceedings of the 2013 IEEE 29th International Conference on Data Engineering. Brisbane: IEEE, 2013. 266–277.
    [20] Kianian S, Rostamnia M. An efficient path-based approach for influence maximization in social networks. Expert Systems with Applications, 2021, 167: 114168. [doi: 10.1016/j.eswa.2020.114168
    [21] 李国良, 楚娅萍, 冯建华, 等. 多社交网络的影响力最大化分析. 计算机学报, 2016, 39(4): 643–656. [doi: 10.11897/SP.J.1016.2016.00643
    [22] Asim Y, Malik AK, Raza B, et al. A trust model for analysis of trust, influence and their relationship in social network communities. Telematics and Informatics, 2019, 36: 94–116. [doi: 10.1016/j.tele.2018.11.008
    [23] Priayoheswari B, Kulothungan K, Kannan A. Beta reputation and direct trust model for secure communication in wireless sensor networks. Proceedings of the International Conference on Informatics and Analytics. New York: ACM, 2016. 1–5.
    [24] Baek S, Kim S. Trust-based access control model from sociological approach in dynamic online social network environment. The Scientific World Journal, 2014, 2014: 936319
    [25] Golbeck J. Trust and nuanced profile similarity in online social networks. ACM Transactions on the Web, 2009, 3(4): 1–33
    [26] Eggers JJ, BaUml R, Tzschoppe R, et al. Scalar costa scheme for information embedding. IEEE Transactions on Signal Processing, 2003, 51(4): 1003–1019. [doi: 10.1109/TSP.2003.809366
    [27] Lo S, Lin C. WMR—A graph-based algorithm for friend recommendation. Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence. Hong Kong: IEEE, 2007. 121–128.
    [28] Jaccard P. The distribution of the flora in the alpine zone. New Phytologist, 1912, 11(2): 37–50. [doi: 10.1111/j.1469-8137.1912.tb05611.x
    [29] 马立川. 群智协同网络中的信任管理机制研究[博士学位论文]. 西安: 西安电子科技大学, 2018.
    [30] Sabidussi G. The centrality index of a graph. Psychometrika, 1966, 31(4): 581–603. [doi: 10.1007/BF02289527
    [31] Li JQ, Zhou YC, Wu JH, et al. Complex dynamics of a simple epidemic model with a nonlinear incidence. Discrete & Continuous Dynamical Systems-B, 2007, 8(1): 161–173
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐振宇,张欣欣,许力.移动社会网络中基于全局信任模型的用户影响力计算.计算机系统应用,2022,31(3):302-309

复制
相关视频

分享
文章指标
  • 点击次数:903
  • 下载次数: 2158
  • HTML阅读次数: 1548
  • 引用次数: 0
历史
  • 收稿日期:2021-05-12
  • 最后修改日期:2021-06-24
  • 在线发布日期: 2022-01-24
文章二维码
您是第12460535位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号