摘要:构建个人信用风险评估模型的过程中, 特征工程很大程度上决定了评估器的性能, 传统的特征选择方法无法全面的考虑高维度指标对评估结果的影响, 且大多数研究在构建模型的过程中人为决定特征集大小, 导致随机性强、可信度低; 基于此, 提出基于传统风控指标优化XGBoost的随机森林模型(IV-XGBoostRF), 将传统风控指标IV与XGBoost相结合对原始特征集进行筛选, 建立较为完善的信用评估模型. 通过对比实验的结果显示改进后的随机森林模型准确度提高了0.90%, 且其他各项评估指标均优于传统信用评估模型, 证明了该组合特征选择方法的可行性, 有一定的应用价值.